

START-UP SYSTEM

SPECIAL USE RESTRICTIONS

The following paragraphs describe some use restrictions that are not
generally true of application systems that include the Human Interface.

The logical names : SYSTEM: and :PROG:, which, in the Human Interface
subsystem, refer respectively to the system's collection of commands and
your collection of special-purpose commands, are not available in the
Start-Up System. However, you can achieve the effects of using : SYSTEM:
and :PROG:, as they are described in the iRMX 86 HUMAN INTERFACE
REFERENCE MANUAL, by using SYSTEM/ and PROG/ instead of : SYSTEM: and
:PROG:, respectively.

If your application hardware has iSBC 215/218 controllers, each file name
(including command names, because each command is a file) must be
preceded by the logical name:WFn:, where n is 0 or 1, depending upon
which drive contains the file. If other controllers are used instead,
use the logical name that was specified when the ATTACHDEVICE command was
entered.

5-5

CHAPTER 6. PATCHING UTILITY

The 8086 Patching Utility provides you with a convenient method of
replacing existing relocatable object modules with newer versions
containing software updates or repair code. The replacement versions
must first be generated with the MCS-86 Assembler.

You can replace a module with a newer version or with repair code in two
ways:

• As a patch that generates a jump instruction to the replacement
code and appends the replacement code to the end of the original
module.

• As an in-place patch that directly overlays the replacement code
on that of the original module.

An example of each technique is provided later in this chapter.

The replacement modules themselves may be supplied in anyone of three
forms:

• An Intel-supplied object file, on diskette. In this case, all of
the coding and assembly has been done; you need only invoke the
Patching Utility to effect the replacement.

• An Intel-supplied source code listing with instructions for
inserting the replacement code; in this case, much of the
preliminary work has been done and you need little or no
knowledge of MCS-86 Macro Assembly Language to generate the
replacement object module.

• A user-created replacement module; in this case, a working
knowledge of MCS-86 Macro Assembly Language is required.

A patched module retains neader record names for the original module,
plus the names for the replacement modules. By using the Patching
Utility, you can display the complete list of names to determine a
module's update status.

A typical module patching session takes approximately one hour, depending
upon repair module complexity, module size, and library size.

6-1

I

PATCHING UTILITY

INVOKI~G THE PATCHING UTILITY

You prepare to invoke the Patching Utility by placing a diskette
containing it in drive 0 of your INTELLEC Development System. Next, call
the Patching Utility by entering the PTCH86 command in the form:

PTCH86 filename [segmentname segmentattribute]

where:

filename

segmentname

Name of an ISIS-II file containing an iAPX 86
object module produced by PL/M-86, ASM86, or LINK86.

Name of the segment whose combine-type parameter is
to be modified. The name must be a valid segment
name.

segmentattribute Keyword switch that determines the combine-type
attribute given to the named segment. You must
specify the attribute as either COMMON or PUBLIC.
The COMMON attribute allows patch code to be
overlayed on the segment. The PUBLIC attribute
returns the segment to the combination mode
normally given by the PL/M-86 compiler.

See the MCS-86 MACRO ASSEMBLY LANGUAGE REFERENCE
MANUAL for a more detailed explanation of
combine-type segments.

The Patching Utility responds by displaying

8086 OBJECT PATCHING UTILITY, vX.X

followed by an indication of the outcome of the patch operation and then
the ISIS-II prompt ")". If the invocation line contained the optional
segmentname and segmentattribute, the message "ATTRIBUTE MODIFIED" is
displayed. If the invocation line contained only the filename, the
translator header records (described later in this chapter) for the file
are displayed. Otherwise, the patch operation failed and an error
message is displayed.

PATCHING PROCEDURES

Repair modules that you insert into existing modules must be generated
with the MCS-86 Assembler. To patch an independent object module
containing errors (patching library modules is described later in this
chapter), you invoke the Patching Utility to modify the combine-type
attribute in the desired module segment to COMMON. This step allows you
to use LINK86 to overlay the repair module on the segment to be patched.
After linking with the repair module, you then use the Patching Utility
-to restore the PUBLIC attribute to the segment. The following example
illustrates the steps for repairing independent object module files:

6-2

PATCHING UTILITY

1. Enter the PTCH86 command to set the CODE segment combine-type
attribute to COMMON, for example:

PTCH86 badmodule CODE COMMON

2. Enter the LINK86 command to overlay the repair object module on
the original version, for example:

LINK86 badmodule, repairmodule TO newmodule

3. Enter the PTCH86 command to restore the CODE segment to PUBLIC,
for example:

PTCH86 newmodule CODE PUBLIC

Typical examples of jump instruction overlays, in-place patch overlays,
library module patching, and listing module header records are given in
the following sections.

JUMP INSTRUCTION PATCH

In the following example, the module generates a patch that overlays a
jump instruction on offset OlOOH through Ol02H of the original module.
The jump transfers control to repair code at offset 0500H. The repair
code is appended to the end of the module and is thus appended to that
module.

EXAMPLE:

NAME REPAIR VOOOOI ; Identifying module name.

CODE
CGROUP

SEGMENT
GROUP
ASSUME

ORG

JMP

RETURN LABEL

ORG

REPAIRCODE:

WORD COMMON
CODE
CS : CGROUP

OlOOH

REPAIRCODE

NEAR

0500H

'CODE'

Offset of area in original module
to be patched.

Return here from repair area.

Offset of end of original module.

(Repair goes here)

JMP RETURN Return control to original module.
CODE ENDS
END

6-3

PATCHING UTILITY

IN-PLACE PATCH

The following example generates an in-place patch that directly overlays
repair code on a module's previous code.

EXAMPLE;

NAME REPAIR V00002 ; Module name identification.

CODE
CGROUP

SEGMENT
GROUP
ASSUME

ORG

ADD

CODE ENDS

END

WORD COMMON
CODE

'CODE'

CS : CGROUP

0200H

AX, 3

Offset of the original operand.

Replaces the original value with a "3"
(the new instruction must be the same
size as the original instruction).

PATCHING LIBRARY MODULES

To patch an object module that is located in a library, use the SUBMIT
command file (PATCH.CSD) supplied on your Utilities diskette. When
invoked, the SUBMIT file will perform the following steps:

1. Enters a LINK86 command to separate the module to be patched from
the library and put it in a temporary file.

2. Enters the PTCH86 command to set the CODE segment combine-type
attribute to COMMON.

3. Enters a LINK86 command to overlay the replacement object module
on the original version.

4. Enters the PTCH86 command to restore the CODE segment PUBLIC
attribute.

5. Enters a LIB86 command to replace the original module 1n the
library with the updated version.

6. Deletes the temporary files when the replacement is completed.

To invoke the SUBMIT file, enter the command in the following format.
Note that the parentheses enclosing the parameter string and the embedded
commas are required; embedded blanks are optional:

SUBMIT PATCH(library, oldmodule, segment, newmodule)

6-4

where:

library

oldmodule

segment

newmodule

PATCHING UTILITY

Name of library containing the old module to be
replaced.

Name of the module to be replaced.

Name of the segment whose combine-type attribute is to
be set to COMMON.

Name of the file containing the replacement module
code.

LISTING MODULE HEADER RECORDS

If you are performing an Intel-supplied patch and you want the Patching
Utility to list an object module's translator header records on the
console screen, enter the PTCH86 command without specifying the segment
name or segment attribute. The listed records allow you to identify the
patches that have been made to the module. A typical PTCH86 command
entry and resulting header record display is as follows:

PTCH86 FILE.OBJ
ORIGINALMODULE
ORIGINALMODULE REPAIR V030-0l
ORIG I NALMODULE-RE PAl R-VO 30-0 2

The "030" stands for version 3.0 of the software being patched, and "01"
and "02" are the patch numbers of the Intel-supplied patches that have
been made to the module.

ERROR MESSAGES

When the Patching Utility encounters an error condition during a module
repair session, it displays one of the following error messages:

ERROR nnn USER PC mmmm

An ISIS-II system call returned a non-zero error status, given as nnn.
See the ISIS-II USER'S GUIDE for an explanation of numbered error
messages.

6-5

I

I

I

I

PATCHING UTILITY

INVALID RECORD TYPE

The object file contains an invalid record type for the object module
format. Perhaps the wrong filename was entered, or the file contains
code other than object code.

INVALID SYNTAX

The command line contains an error that was caused by a missing filename
or a missing or misspelled keyword.

SEGMENT NOT FOUND

The desired record was not found before the end of the module.

~6

. .I

CHAPTER 7. iRMX 86m DEVELOPMENT PROCEDURES

In order to produce a final iRMX 86-based application system for your
users, you must go through two phases: a development phase and a
production phase. During the development phase you design, build, and
debug your system. In the production phase you produce the final systems
for your users. This chapter outlines the steps you need to follow as
you develop your iRMX 86-based application system. The steps illustrate
the main points of the development process.

1. Define your application.

2. Do the high-level design, as follows:

• Identify your hardware requirements.

• Determine which of the iRMX 86 subsystems you need. The
configurable nature of the iRMX 86 software allows you to
select the parts that your application requires. It is
recommended that you include the Debugger in your application
system until it is fully developed. When you have completed
the development process, you can remove the Debugger from
your system to reduce memory requirements.

• Divide your application into jobs and tasks. Assign task
priorities, identify exchanges used for intertask
communication, and determine the methods of interrupt
handling and exception processing. Refer to the INTRODUCTION
TO THE iRMX 86 OPERATING SYSTEM, iRMX 86 NUCLEUS REFERENCE
MANUAL, iRMX 86 TERMINAL HANDLER REFERENCE MANUAL, and iRMX
86 DEBUGGER REFERENCE MANUAL for more information about these
processes.

3. Write and debug the task code. As you finish writing each task,
you can use either the ICE-86 In-Circuit Emulator or the iSBC
957A package to debug the task independently. Later, you can use
the Debugger to debug the entire application.

4. Configure the application system. Do this by creating a system
configuration file and an individual configuration file for each
part of the Operating System. Assemble and compile all of the
code, link it in the correct manner, and locate it at the proper
addresses. See the iRMX 86 CONFIGURATION GUIDE for a detailed
description of this process.

5. Assemble your hardware for testing the system.

6. If you are using the I/O System in your application, load the
Start-Up System or the Files Utility System, format your iRMX 86 I
disks, and copy any necessary information to them.

7-1

iRMX 86 m DEVELOPMENT PROCEDURES

1. Load your code into memory using one of the following:

• The ICE-86 In-Circuit Emulator

• The iSBC 957A INTELLEC -- iSBC 86/12A Interface and Execution
Package

• The Bootstrap Loader

• The Application Loader

• The Human Interface (which calls the Application Loader)

8. Test and debug your system using the Debugger and either the
ICE-86 In-Circuit Emulator or the iSBC 957A Interface and
Execution package. Continue performing steps 3, 4, and 7 until
you are satisfied with your system.

9. Unless you want the Debugger to be a permanent part of your
system, perform step 4 again, but omit the Debugger.

10. Burn your debugged code into PROM and place it on your iAPX
86-based microcomputer system, or place your debugged code on an
iRMX formatted diskette and use the Bootstrap Loader to load the
code directly into memory.

Note that you can use the Bootstrap Loader to load your code at any stage
of the development procedures, including the debugging stage (see the
iRMX 86 SYSTEM PROGRAMMER'S REFERENCE MANUAL for information on using the
Bootstrap Loader).

7-2

CHAPTER 8. FILES UTILITY SYSTEM

The INTELLEC Microcomputer Development System does not recognize iRMX 86
diskette files. Consequently you cannot read, write, or format iRMX 86
diskettes directly from the ISIS-II operating system. However, you can
perform these operations indirectly from the Development System by using
the iRMX 86,Files Utility System.

FUNCTIONS PROVIDED

The iRMX 86 Files Utility System is an iRMX 86 application system that
allows you to perform the following operations:

• Format an iRMX 86 diskette.

• Copy a file from an ISIS-II diskette to an iRMX 86 diskette.

• Copy a file from an iRMX 86 diskette to an ISIS-II diskette.

• Delete a file from an iRMX 86 diskette.

• Create a directory on an iRMX 86 diskette.

• Display, on the Development System terminal, the contents of a
directory of an iRMX 86 diskette.

HARDWARE REQUIRED

The Files Utility System requires the following hardware:

• A Microcomputer Development System having at least 64k bytes of
memory and at least one disk drive (hard or flexible).

• An iSBC 86/12A Single Board Computer with at least 192k bytes of
memory and at least one disk drive (hard or flexible).

• The iSBC 957A INTELLEC -- iSBC 86/12A Interface and Execution
Package.

8-1

I

FILES UTILITY SYSTEM

STARTING THE FILES UTILITY

Before you can enter commands to the Files Utility, you must start it
up. This involves connecting certain hardware modules and then entering
appropriate commands on the INTELLEC Microcomputer Development System
terminal.

After you have assembled your hardware, perform the following steps:

1. Place an ISIS-II system diskette containing the iSBC 957A
software into drive 0 of your INTELLEC Microcomputer Development
System and the Utilities diskette into any other drive.

2. Load the ISIS-II system.

3. Enter the following ISIS-II command:

SUBMIT :fx:FILES (:fx:)

where:

fx Identifier of the diskette drive containing the
Files Utility diskette.

When you enter this command, the ISIS-II operating system reads and
processes the commands contained on the FILES.CSD file. These commands
instruct the iSBC 957A monitor to load the Files Utility System from a
diskette on the INTELLEC system into RAM on the iSBC 86/l2A board.

After the ISIS-II system finishes processing the commands in the submit
file, the system prompts for another command. Respond by entering

SBC861

This command instructs the ISIS-II system to connect you to the iSBC 957A
monitor. The monitor signals you that it is ready to accept your next
command by displaying a period (.) on the screen of your INTELLEC
system. When the period appears, enter

G

This causes the Disk Utility System to begin running. The screen of your
INTELLEC system should display the heading

iRMX 86 FILES UTILITY Vx.x

The Files Utility signals that it is ready to accept your next command by
displaying an asterisk (*) on the screen of the INTELLEC system.

8-2

FILES UTILITY SYSTEM

USING THE FILES UTILITY

The Files Utility provides 10 file management commands, as follows:

ATTACHDEV
PREAK
CREATEDIR
DELETE
DETACH

DIR
DOWN COpy
FORMAT
HELP
UPCOPY

The commands are described in alphabetical sequence later in this
chapter. However, before actually using the commands, you should
understand the diskette handling procedures and how the Files Utility
System handles errors.

CHANGING DISKETTES

When the Files Utility is running and you have already performed an
operation on a particular diskette, you cannot simply remove that
diskette from the drive and replace it with another. The Utility System
is not aware of diskette changes and treats the second diskette as if it
were the first, and thereby possibly writes over or destroys valuable
information. To change diskettes in a drive, you must enter a DETACH
command to logically detach the drive from the system, change diskettes,
and then (with one exception) enter an ATTACHDEV command to again
logically attach the device.

The one exception to this command entry sequence is the FORMAT command.
As described later in this chapter, this command writes iRMX 86
formatting information on blank diskettes. Since the FORMAT command
always expects a blank diskette and a detached drive, you can replace
diskettes in a drive any number of times if you use only the FORMAT
command before entering the ATTACHDEV command. The FORMAT command will
destroy the information, if any, previously contained on the diskette.

COMMANDS

This section provides descriptions of the Files Utility commands and
their parameters in alphabetical sequence. Each command has a
two-character abbreviation. You can use either the full name or its
abbreviation when entering a command.

I ATTACHDEV (AD)

This command attaches a physical device to the system and associates a
logical name with the device. The command can also be used to display
the current attachment of a logical name. The format is as follows:

8-3

I

I

FILES UTILITY SYSTEM

AD :logicalname:[= physicalname]

where:

:logicalname:

=

physicalname

I BREAK (BR) I

A I-to 12-character ASCII name, surrounded by colons.

If used, there must be no spaces surrounding the
equal sign.

Physical device name as configured in the I/O System
(see Table 5-1). If physical name is omitted, the
current attachment is displayed by default; for
example:

AD :FO: (command entry)
:FO: = FXO (displayed output)

This command causes an exit from the Files Utility System to the iSBC
957A monitor. The format is as follows:

BR

I CREATEDIR (CD) I
This command creates an iRMX 86 directory file. The format is as follows:

CD rmx-pathname

where:

rmx-pathname Path name of the iRMX 86 directory file to be created.

I DELETE (DE)

This command removes the specified iRMX 86 file from the directory where
it is listed. The format command is as follows:

DE rmx-pathname

where:

rmx-pathname Path name of the iRMX 86 file to be deleted.

8-4

FILES UTILITY SYSTEM

DETACH (DT)

This command detaches a logical name from the system. The command is
used for changing diskettes, prior to entering a FORMAT command, or to
reconfigure a device to a different sector size. The format is as
follows:

DT :logical-devicename:

where:

:logical-devicename: The logical name you assigned to a physical
device via an ATTACHDEV command.

I DIR (DI) I
This command lists an iRMX 86 directory file at the Development System
console. The format is as follows:

DI rmx-pathname [S]

where:

rmx-pathname

S

Path name of the iRMX 86 directory file to be listed.

Switch that causes a "long" or expanded display of
directory file that includes: file type (a "DR"
heading for a directory file or a blank heading for a
data file), number of blocks, and number of bytes in
file. If S is not specified, a "fast" format will be
displayed, consisting of file names only

The directory file listing includes a line that lists the size of the
directory. This line appears as:

n FILES

In this line, n specifies the number of entries currently present in the
directory.

I DOWNCOPY (DC) I
This command creates an ISIS-II file and copies the specified iRMX 86
file to it. If the ISIS-II file already exists, it is written over. The
format is as follows:

DC rmx-pathname TO isis filename

8-5

I

I

FILES UTILITY SYSTEM

where:

rmx-pathname Path name of the iRMX 86 file to be copied.

isis-filename Name of the ISIS-II file to be created.

I FORMAT (FO) I
This command writes iRMX 86 formatting information on a diskette. All
information previously contained on the diskette will be destroyed by the
formatting operation. Each diskette must be formatted before it can be
used by the iRMX 86 Operating System.

The FORMAT command expects an unattached drive. The drive device can
either be unattached at system start up, or you can detach it by entering
a DETACH command prior to entering the FORMAT command. Since the device
remains unattached after FORMAT completes execution, you must attach the
device by entering an ATTACHDEV command before entering any other Utility
command except another FORMAT command. (See also the "Changing
Diskettes" section in this chapter, and the ATTACHDEV and DETACH command
descriptions.)

The FORMAT command contains parameters that are specified in the form
"keyword=value". There must not be any spaces surrounding the equal
sign. Also, you can abbreviate each of these keywords as shown. The
abbreviations and the format of this command are as follows (brackets []
indicate optional parameters):

FO physicalname volumename [GRANULARITY=gran]
[INTERLEAVE=ileave] [NUMBERFNODES=nodes] [switch]

or

FO physicalname volumenname [GR=gran] [IL=ileave]
[NF=nodes] [switch]

where:

physicalname

volumename

Physical device name for the drive, as configured in
the I/O System, that denotes the iRMX 86 drive on
which the diskette resides. Possible values are
itemized in Table 3-1.

A 1- to lO-character volume name that identifies the
diskette. Decimal digits, uppercase and lowercase
letters, and the following special characters can be
used in the volume names:

&

%

,
(
)

*
+

,
/
= ?

8-6

gran

ileave

nodes

switch

I HELP (HE) I

G

FILES UTILITY SYSTEM

The granularity, in bytes, for this volume. The
granularity is the number of bytes obtained during
each diskette access. If you omit this parameter, the
default volume granularity is the device granularity
(the number of bytes in a physical sector).
Specifying any value less than the device granularity
causes the default to be used. Any non-multiple of
device granularity (such as 128 or 512) is rounded
upward to the next higher multiple of device
granularity.

The interleave factor for the volume, or the number of
physical sectors between logical sectors. You can
specify any integer from 1 to 13 for this value. If
you omit this parameter, a default value of 1 is
assumed.

The number of files that can be created on this
volume. If you omit this parameter, a default value
of 100 is assumed.

A switch that indicates the support option for this
volume. One value can be entered for the switch:

NAMED The volume is created for
the named file driver. The ROOT
directory is initialized.

If you omit this switch, the volume is created for the
physical file driver. In this case, FORMAT records the
interleave information on the diskette but does not
initialize any of the iRMX 86 file structures.

This command displays a list of the available Files Utility commands and
their syntax on the console screen. The format is as follows:

HE

I UPCOPY (UC)

This command creates an iRMX 86 file and copies the specified ISIS-II
file to it. If the iRMX 86 file already exists, it is written over. The
format is as follows:

UC isis filename TO rmx pathname

8-7

FILES UTILITY SYSTEM

where:

isis filename Name of the ISIS-II file to be copied.

rmx pathname Path name of the iRMX 86 file to be created.

ERROR MESSAGES

The Files Utility displays all error messages on the screen of the
• INTELLEC System. These messages can be in any of three forms. If the

message is

I

I

I UNRECOGNIZED COMMAND

the Files Utility does not recognize the spelling of your command and
prompts for another command.

The Files Utility actually uses the ISIS-II operating system to read and
write diskettes attached to the INTELLEC system. If the ISIS-II system
detects any errors, it returns an error code to the Files Utility.
Whenever the Files Utility receives an ISIS-II error, it displays the
following message:

ISIS ERROR # nn

where nn is in decimal. To interpret this error message, refer to the
ISIS-II USER'S GUIDE. Fatal errors require you to restart the Files
Utility System by using the FILES.CSD file, as described earlier in this
chapter.

When reading or writing on drives attached to the iSBC 86/12A board, the
Files Utility System uses the iRMX 86 Nucleus and the iRMX 86 I/O
System. If either of these modules returns an exceptional condition code
to the Files Utility, the following message is displayed:

RMX EXCEPTION I mm

where mm is in hexadecimal. For a brief explanation of such an error
message, refer to Appendix B. For more detailed information, refer to
the iRMX 86 NUCLEUS REFERENCE MANUAL, the iRMX 86 BASIC I/O SYSTEM
REFERENCE MANUAL, or the iRMX 86 EXTENDED I/O SYSTEM REFERENCE MANUAL.
After this message is displayed, the Files Utility prompts for the next
command.

8-8

1

APPENDIX A. ORIGINAL BOARD JUMPER CONNECTIONS

This appendix contains lists of the jumper connections that are made on
the iSBC 86/12A, 204, 206, 215, 218, and 254 boards at the factory. The
iRMX 86 Operating System is designed to run with factory-jumpered boards
that have been modified as described in this manual. To ensure that your
boards are jumpered correctly, first restore them to the condition
indicated in this appendix. Then modify them as recommended in Chapter 3
of this manual.

Table A-I. Original iSBC 86/12A Jumpers

Pin Connections

5-6 7-8 7-10 13-14
15-16 17-18 19-20 21-25
24-35 26-27 28-29 30-31
32-33 39-40 42-43 54-55
56-57 59-60 68-76 79-83
87-89 92-93 94-96 97-98

103-104 105-106 125-126 129-130
143-144 151-152

Jumper Pad Connection

WI A-B
W2 A-B
W3 A-B
W4 A-B
W5 A-B
W6 A-B
W7 A-C
W8 A-D
W9 A-C

A-I

•

I

1-8
37-38
75-76

ORIGINAL BOARD JUMPER CONNECTIONS

Table A-2. Original iSBC 204 Jumpers

Pin Connections

19-20
45-47
77-78

Jumper Pad

WI

23-24
55-56

Connection

B-C

26-27
63-67

Table A-3. Original iSBC 206 Jumpers (Channel Board)

4-5 9-11 13-17 15-16

Table A-4. Original iSBC 215A Jumpers

Jumper Pad Connection Jumper Pad Connection

WI 1-3 W9 1-2
W3 1-2 Wl0 1-2
W4 1-2 W13 1-2
W5 1-3 W14 1-2
W6 1-3 W16 1-2
W7 1-3 W17 1-2
W8 1-3 W22 1-2

Table A-5. Original iSBC 215B Jumpers

Jumper Pad Connection Jumper Pad Connection

WI 1-2 Wl0 1-2
W3 1-2 W13 1-2
W4 1-2 W14 1-3
W5 1-2 W15 1-2
W6 1-2 W16 1-2
W7 1-2 W17 1-2
W8 1-2 W22 1-3

A-2

2-3
27-28
67-68

ORIGINAL BOARD JUMPER CONNECTIONS

Table A-6. Original iSBC 218 Jumpers

Jumper Pad

W2
W8

Connection

A-C
A-B

Table A-7. Original iSBC 254 Jumpers

5-6
29-30
75-76

A-3

8-9
45-46

11-12
63-64

APPENDIX B. iRMX 86~ CONDITION CODES SUMMARY

Table B-1 provides a list of the iRMX 86 condition codes that may be
encount·ered during system installation processes. It is not a complete
list of all possible iRMX 86 condition codes. See the appropriate iRMX
86 manual for a more detailed description of the meanings.

Numeric Code
Hex. Dec.

OH o

1H 1

2H 2

3H 3

4H 4

5H 5

6H 6

7H 7

8H 8

20H 32

Table B-1. iRMX 86~ Condition Codes

Mnemonic ,Meaning

E$OK No exceptional conditions (normal)

Environmental Conditions

E$TIME

E$MEM

E$BUSY

E$LIMIT

E$CONTEXT

E$EXIST

E$STATE

ENOTCON
FIGURED

E$FEXIST

A time limit (possibly a limit of zero
time) expired without a task's request
being satisfied.

Insufficient available memory to satisfy
a task's request.

Another task currently has access to data
protected by a region

A task attempted an operation which, if
it had been successful, would have
violated a Nucleus-enforced limit.

A system call was issued out of proper
context.

A token parameter has a value which is
not the token of an existing object.

A task attempted an operation which would
have caused an impossible transition of a
task's state.

This system call is not part of the
present configuration.

File already exists.

B-1

I

I

iRMX/86~ CONDITION CODES SUMMARY

Table B-1. iRMX 86~ Condition Codes (cpntinued)

Numeric Code
Hex. Dec.

21H 33

22H 34

23H 35

24H 36

25H 37

26H 38

27H 39

28H 40

29H 41

2AH 42

2BH 43

2CH 44

2DH 45

40H 64

41H 65

42H 66

44H 68

Mnemonic Meaning

Environmental Conditions (continued)

E$FNEXIST

E$DEVFD

E$SUPPORT

E$EMPTY$
ENTRY

EDIREND

E$FACCESS

E$FTYPE

E$SHARE

E$SPACE

E$IDDR

E$IO

E$FLUSHING

E$ILLVOL

E$PREFIX$
SYNTAX

E$CANNOT$
CLOSE

E$IOMEM

E$MEDIA

File does not exist.

Device and file driver are incompatible.

Combination of parameters not supported.

The specified slot in a directory file is
empty.

The specified slot is beyond the end of a
directory file.

File access not granted.

Incompatible file type.

Improper file sharing requested.

No space left.

Invalid device driver request.

An I/O error occured.

Connection specified in call was deleted
before the operation was completed.

Invalidly named volume.

The specified path starts with a colon (:)
but does not contain a second, matching
colon.

The Extended I/O System was not able to
transfer remaining data in buffers to
output device.

The Basic I/O System has insufficient
memory to process a request.

The device containing a specified file is
not online.

B-2

iRMX/86~ CONDITION CODES SUMMARY

Table B-1. iRMX 86~ Condition Codes (continued)

Numeric Code
Hex. Dec.

45H 69

8000H 32768

8001H 32769

8002H 32770

8003H 32771

8004H 32772

8005H 32773

8020H 32800

8021H 32801

8022H 32802

8040H 32832

8041H 32833

8042H 32834

Mnemonic Meaning

Environmental Conditions (continued)

ELOGNAME
NEXIST

The Extended I/O System was unable to
find a specified logical name in the
object directories that it checks.

Programmer Errors

E$ZERO$
DIVIDE

E$OVER-FLOW

E$TYPE

E$BOUNDS

E$PARAM

EBADCALL

E$IFDR

E$NOUSER

ENOPREFIX

ENOTPREFIX

ENOTDEVICE

ENOTCON
NECTION

A task attempted to divide by zero.

An overflow interrupt occurred.

A token parameter referred to an existing
object that is not of the required type.

A task attempted to access beyond the end
of a segment.

A parameter which is neither a token nor
an offset has an invalid value.

The I/O System code has been damaged,
probably due to a bug in an application
task. Recovery is not possible.

Invalid file driver request.

No default user.

No default prefix.

Specified object not a device connection
or file connection.

A token parameter referred to an existing
object that is not, but should be, a
device connection.

A token parameter referred to an existing
object that is not, but should be, a file
connection.

B-3

I

APPENDIX C. HARDWARE REQUIREMENTS FOR CUSTOM CONFIGURATIONS •

The minimum hardware requirements for installing the iRMX 86TH Nucleus
on custom boards built from components are defined below:

• iAPX 86.

• 8253 Programmable Interval Timer (PIT).

• 8259A Programmable Interrupt Controller (PIC).

• 24K bytes ROM (for a fully-configured Nucleus).

• 2600 bytes RAM, of which 1024 bytes must be contiguous and must
start at address O.

To run the Terminal Handler or Debugger, an 8251A Programmable
Communications Interface (PCI) is required, as well.

C-1

APPENDIX D. iRMX 86m SOFTWARE VERSION NUMBERS

The version numbers for all required and optional software that comprise
Release·3.0 of the iRMX 86 Operating System are listed in Table D-l.

Table D-l. iRMX 86m Software Version Numbers

iRMX 86
Module

Nucleus
Terminal Handler
Debugger
Basic I/O System
Extended I/O System
Application Loader
Bootstrap Loader
Human Interface
Files Utility
Patching Utility
Start-Up System

D-l

Version
Number

3.0
3.0
3.0
3.0
1.0
2.0
2.0
1.0
3.0
1.0
1.0

INDEX

Primary references are underscored.

ABS function 4-11
altering TBASIC statement lines 4-4
Application Loader 1-1, 2-2, 2-4, 7-2
application-dependent requirements 2-3
application system 2-1, 5-1, 7-1
arrays 4-4
storage space 4-12

ATTACHDEV command 8-3

backplane 3-5
BASIC

functions 4-11
statements 4-7

baud rate 4-1, 5-1
Basic I/O System 1-1, 2-4
board
arrangement in the chassis 3-5
jumpering A-I
modifications 3-1

Bootstrap Loader 1-1, 2-2, 2-3, 2-4, 7-2
BPRN/ signal 3-5
BREAK command 8-4

cable connections 3-6
CATALOG statement 4-13
changing disks 8-3
chassis arrangement 3-5
COMMON attribute 6-2
components iii, 2-2, C-l
condition codes 8-8, B-1
constants 4-5
CREATEDIR command 8-4

CRTMBOX function 4-13
CRTSEGM function 4-14
CRTSEMA function 4-14
CRTTASK function 4-15
custom boards iii, C-l

Debugger 1-1, 2-3, 2-4, 7-2
deferred mode 4-3
DEBUGR.DMO 4-2
DELETE command 8-4
DELMBOX statement 4-16
DELSEGM statement 4-16
DELSEMA statement 4-17
DELTASK statement 4-17

Index-l

INDEX (continued)

demonstration system 4-1
DETACH command 8-5
development
environment 2-1
process 7-1

Development System 1-1, 2-2, 4-1, 5-2, 6-2, 7-1, 8-1
dictionary of statements and functions 4-5
DIR command 8-5

. direct mode 4-3
disk drives 2-2, 2-3, 3-1, 5-1
disk identifier 8-6
disks 1-3, 5-1, 8-1, 8-3, 8-6
DOWNCOPY command 8-5

error messages 6-5, 8-8
expressions 4-5
Extended I/O System 1-1, 2-4

factory-installed jumpers 3-1, A-I
file management commands 5-3
Files Utility System 2-3, 3-1, 3-3, 3-6, 7-1, 8-1
FILES.CSD file 8-2
FOR statement 4-7
FORMAT command 8-6
functions 4-5, 4-11, 5-1, 6-1

general requirements 2-2
GETTKNS function 4-17
GOSUB statement 4-8
GOTO statement 4-8
granularity 8-6

hardware
considerations 3-1
requirements 4-1, 5-2, 8-1, C-l

header records 6-1, 6-2, 6-5
HELP command 8-7 ---
Human Interface 1-1, 2-2, 2-3, 2-4, 5-1, 5-5, 7-1, 7-2

iAPX 86 1-1
ICE-86 In-Circuit Emulator 2-2, 2-3,3-5, 3-6, 4-1, 4-2, 7-1, 7-2
iCS 80 chassis 3-5
IF statement 4-8
INTELLEC Development System 1-1, 2-2, 4-1, 5-2, 6-2, 8-1
in-place patch 6-4
INPUT statement 4-9
interactive mode 4-3
interleave factor 8-6
interrupt levels 3-2
introduction to the RMX/86 package 1-1
inventory 1-2

Index-2

INDEX (continued)

iRMX 86
development environment
operating system 1-1
package 1-1
software version numbers
statements and functions

iSBC 204
board 2-3, 3-1, 3-5, 5-2
modifications 3-2

iSBC 206
board 2-3, 3-1, 3-5
modifications 3-3

iSBC 215
board 2-3, 3-1, 3-5, 5-2
modifications 3-4

iSBC 254
board 2-3, 3-1, 3-5
modifications 3-4

2-1

D-l
4-11

iSBC 604 cardcage/backplane 3-5
iSBC 614 expansion cardcage/backplane 3-5
iSBC 660 chassis 3-5
iSBC 86/12A

board 2-2, 3-1, 3-5, 3-6, 5-2, 8-1, A-I
modifications 3-1

iSBC 957A package 2-2, 2-3, 3-6, 4-1, 4-2, 5-1, 7-1, 7-2, 8-1, 8-2
iSBX 218

board 3-1, 5-2
modifications 3-4

iSBX 337 multimodule 3-2
ISIS-II errors 8-8
ISIS-II operating system 2-2, 8-1, 8-2

jump instruction patch 6-3
jumper connections 3-1, A-I

LET statement 4-9
library module patching 6-4
LIST statement 4-10
loading the demonstration system 4-2
LOOKUPO function 4-18

mailbox 4-13, 4-16, 4-19, 4-21
manuals 1-2
MCS-86 Macro Assembler 2-2, 6-1
MCS-86 Software Development Utilities 2-2
memory board jumper connections 3-4
memory requirements 2-2, 2-3, 2-4
messages 8-8
modes 4-J
MULTIBUS contention 3-4

named file driver 8-7
NEW statement 4-10
NEXT statement 4-7

Index-J

INDEX (continued)

Nucleus 1-1, 2-2, 2-4, C-1
Nucleus Demonstration System 4-1
NUCLUS.DMO 4-2

operating modes 4-3

Patching Utility 6-1
PATCH.CSD 6-4
physical device names 3-7
PL/M-86 compiler 2-2
priority 3-4
PRINT statement 4-10
program storage 4-3
protecting system software 1-3
PUBLIC attribute 6-2

RAM requirements 2-3, 2-4, C-1
RCVUNIT function 4-19
recommendations 1-3
RECVMSG function 4-19
REM statement 4-11
RESTASK statement 4-20
RETURN statement 4-11
RND function 4-12
ROM requirements 2-3, 2-4, C-1
ROOTJB.DMO 4-2
RUN statement 4-11

segment 4-14, 4-16
semaphore 4-14, 4-17, 4-19, 4-22
SENDMSG statement 4-21
serial priority scheme 3-4
SIZE function 4-12
SLEEP statement 4-21
SNDUNIT 4-22
starting the Files Utility 8-2
Start-Up System 2-3, 3-1, 3~3, 3-6, 5-1
statements and functions 4-5, 4-12
dictionary 4-6

STOP statement 4-11
storing programs 4-3
SUPLD 5-3
support option 8-7
SUSTASK statement 4-22
system software protection 1-3

target system 2-2
task 4-15, 4-17, 4-19, 4-22
TBASIC.DMO 4-2
TBASIC interpreter 4-1
Terminal Handler 1-1, 2-3, 2-4

UNCATLG statement 4-23
UPCOpy command 8-7

Index-4

INDEX (continued)

using the demonstration system 4-3
using the Files Utility 8-3

variables 4-4
volume
granularity 8-6
name 8-6

Index-5

REQUEST FOR READER'S COMMENTS

iRMX 86™
Installation Guide

9803125-03

Intel Corporation attempts to provide documents that meet the needs of all Intel product users. This form lets
you participate directly in the documentation process.

Please restrict your comments to the usability, accuracy, readability, organization, and completeness of this
document.

1. Please specify by page any errors you found in this manual.

2. Does the document cover the information you expected or required? Please make suggestions for
improvement.

3. Is this the right type of document for your needs? Is it at the right level? What other types of documents are
needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this document on a scale of 1 to 10 with 10 being the best rating. _____ _

NAME --------------------________________________________ DATE ____________ _

TITLE

COMPANY NAME/DEPARTMENT __ __

ADDRESS __________ ~--
CITY ------------------_______________________ STATE _____ ZI P CODE ____ __

Please check here if you require a written reply. 0

WE'D LIKE YOUR COMMENTS

This document is one of a series describing Intel products. Your comments on the back of this
form will help us produce better manuals. Each reply will be carefully reviewed by the responsible
person. All comments and suggestions become the property of Intel Corporation.

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 79 BEAVERTON, OR

POSTAGE WILL BE PAID BY ADDRESSEE

Intel Corporation
5200 N.E. Elam Young Pkwy.
Hillsboro, Oregon 97123

O.M.S. Technical Publications

111111
NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, California 95051 (408) 987-8080

Printed in U.S.A.

