

Editing Converter Qutput

3-8

16
17
18
19
20
2
22
23
24
25
27
28
30
31
32
33
34
35
36

EXPRESSION ASSUMED TO BE A VARIABLE

ADDRESS EXPRESSION MAY BE INVALID FOR 8086
INSTRUCTION AS OPERAND CANNOT BE TRANSLATED
REGISTER USED IN UNKNOWN CONTEXT

OUTPUT LINE TOO LONG; TRUNCATED

LABEL ASSUMED TO BE NEAR

NOMACROFILE CONTROL DELETED

MOD85 CONTROL DELETED

SOURCE LINE TOO LONG; IGNORED

CURRENT SEGMENT UNKNOWN; CANNOT GENERATE ENDS
SYMBOL NAME TOO LONG

CONDITIONAL ASSEMBLY GENERATED

UNKNOWN INSTRUCTION ASSUMED TO BE A MACRO
GENERATED LABEL MIGHT NEED TO BE DECLARED LOCAL
(NO) COND CONTROL DELETED

(NO) MACRODEBUG CONTROL DELETED

METACHARACTER OR PARENTHESIS FOUND IN IRPC STRING

EXPRESSION ASSUMED TO BE A CONSTANT

SYMBOLIC EXPRESSION MAY BE CONTEXTUALLY INVALID FOR ASM86

CONYV86

CONV86 Editing Converter Qutput

Caution Message Descriptions
1 BYTE REGISTER USED IN WORD CONTEXT OR VICE VERSA

A register variable defined in an EQU directive or as a macro parameter has
been classed as BYTE or WORD according to its predominant usage. In this
statement, the register variable appears in the opposite context. This is
unacceptable for the 8086, since byte and word register mnemonics are dif-
ferent. You should insert the appropriate register mnemonic.

2 8080 REGISTER MNEMONIC APPEARING IN IRPC STRING

The parameter of this IRPC directive is used in a register context. Since 8086
register mnemonics are two characters long, you should change the IRPC direc-
tive (possibly to an equivalent IRP).

3 MACRO PARAMETER BOTH CONCATENATED AND USED AS PARAMETER

One of the arguments of this macro is both concatenated and used as a register.
Y ou may need to manually convert the mnemonics yourself.

4 EXPANDED NAME MAY BE RESERVED WHEN CONCATENATED

One of the arguments of this macro is concatenated. You should examine
the resulting symbol and see if it corresponds to the intent of the 8080/8085
source code. You should also check to see if the resulting concatenated name is
reserved. A list of reserved symbols appears in Appendix D.

5 MACRO PARAMETER USED IN BOTH BYTE AND WORD CONTEXTS

A macro argument is used in both byte and word register contexts. Since the
argument can be of only one type, you should manually alter the macro or over-
ride the argument type.

6 EQU’DORSET REGISTERSYMBOL USEDIN BOTH BYTE AND WORD CONTEXTS

An EQU or SET symbol is used in both byte register and word register contexts.
You should manually insert the appropriate register mnemonic(s). You may
need to use two EQUSs: one for byte usage, and one for word usage.

7 MULTIPLY DEFINED EQU MAY NOT BE ASSIGNED PROPER TYPE

An EQU symbol has been multiply defined, perhaps due to conditional com-
pilation. You should eliminate the excess definition(s), and redefine as
necessary. CONV86 may have assigned the wrong type.

8 UNKNOWN STATEMENT

The converter is unable to recognize this statement, possibly because its
mnemonic is a macro parameter. You should either recode the 8080 source to
produce recognizable statements (legal instructions) and submit the recoded
8080 file to CONVS86, or else simply insert the appropriate 8086 source code in
the OUTPUT file.

Editing Converter Output

3-10

10

"

12

13

14

16

17

TYPE ASSIGNED TO INCLUDED SYMBOL MAY NOT AGREE WITH DEFINITION

The specified symbol is defined in an INCLUDE file. When the INCLUDE file
is converted, the usage of the symbol may not be the same as inferred by
CONYV86 here. You should convert the INCLUDE file and examine the type
CONV86 has assigned to it there, and then ensure that both usages are the same.
If they are not, you should override the assigned usage in either file so as to
make their types identical.

TRANSLATION OF NOP MAY NOT YIELD DESIRED RESULTS

An NOP instruction has been converted to XCHG AX,AX. This may not be the
desired mapping, as it assembles into a one-byte instruction (3 clocks).

TRANSLATION OF RST MAY NOT YIELD DESIRED RESULTS

An RST instruction has been converted to an INT instruction for the 8086. You
should verify that the original intent of the RST instruction was to cause an
interrupt. You should examine the operand carefully to ensure that the instruc-
tion traps to the desired absolute address, and that the intended routine to be
trapped to will be bound to (loaded at) that address.

8085-SPECIFIC INSTRUCTION CANNOT BE TRANSLATED

The 8086 has no counterpart for RIM or SIM. You should recode according to
the 8086 interrupt scheme as described in the 8086 Family User’s Manual under
““Interrupts.”’

FORWARD REFERENCE TO A SYMBOL WHICH IS ‘A REGISTER OR [BX] CANNOT BE
CORRECTLY ASSEMBLED

The 8086 assembler does not accept forward references to registers. You should
move your register EQUs to the beginning of your file.

EXPRESSION ASSUMED TO BE A VARIABLE

CONYV86 has not been able to determine what type of expression is in this
instruction. CONV86 has assumed that the expression is a variable. If this
assumption is incorrect, you should examine the resulting 8086 statement and
recode the mapped expression to suit your intent. You may find it helpful to
insert additional labels.

ADDRESS EXPRESSION MAY BE INVALID FOR 8086

Case 1: Displaced Reference

CONV86 may not have mapped a displaced symbol reference (for instance,
$+ BAZ*(FOO-N)) correctly. You can manually check the mapped displace-
ment. You may find it simpler (and safer) to insert additional labels or variables
rather than manually calculating displacements.

Case 2: HIGH/LOW Applied to Symbolic Address Expressions

You should check the symbols operated on by the HIGH/LOW functions to
ensure that their alignments in 8086 memory correspond to their 8080 page
alignments.

CONYV86

CONV86 N Editing Converter Output

In addition, if you converted using the REL control (a default), you should
insert a group override prefix as follows:

Before Your Editing After Your Editing
LOW(expr) LOW DGROUP:(expr’)
HIGH(expr) HIGH DGROUP:(expr’)

Case 3: Overly Complex Expressions

It is possible that an overly complex 8080 expression has resulted in unaccept-
able MCS-86 source code in your OUTPUT file. You should examine the
original 8080 expression carefully to determine its intent, and then hand-
translate the expression to a valid MCS-86 expression that corresponds to the
original intent.

18 INSTRUCTION AS OPERAND CANNOT BE TRANSLATED
8080/808S instructions are not permitted as operands in your source file.

19 REGISTER USED IN UNKNOWN CONTEXT
A register was used in an unknown context, such as:

REGEQUB

If this directive appears in an INCLUDE file which does not reference REG,
conversion of the INCLUDE file will result in a type ambiguity for B. That is,
CONVS86 will not know at the time of the INCLUDE file’s conversion whether
B maps into CH or CX. You should check to see whether you want B to map
into a byte register or a word register, and change the converter’s mapping
accordingly.

20 OUTPUT LINE TOO LONG; TRUNCATED

An output line has exceeded 129 characters and has been truncated. You should
recode the line in 8086 accordingly.

21 LABEL ASSUMED TO BE NEAR
CONYVS86 has been unable to determine how this label is used; it is assumed to be
of type NEAR. Since CONV86 has no information on how to type this symbol,
you should check its usage and change its type accordingly.

22 NOMACROFILE CONTROL DELETED

No corresponding control exists for the 8086 assembler. No manual editing is
required for this caution.

23 MOD85 CONTROL DELETED

No corresponding control exists for the 8086 assembler. No manual editing is
required for this caution.

24 SOURCE LINE TOO LONG; IGNORED
The current source line exceeds 129 characters and has been mapped into a com-
ment in both 8080/8085 and 8086 output files. You can either recode the source

line and reconvert the source file using CONV86, or you can insert 8086 code in
the OUTPUT file to accomplish the intent of the source line.

3-11

Editing Converter Output

3-12

25

27

28

30

31

32

33

34

CURRENT SEGMENT UNKNOWN; CANNOT GENERATE ENDS

An END or SEG directive in 8086 implies a preceding ENDS directive to close
the currently open segment. This segment is unknown. You should insert an
ENDS directive of the appropriate type.

SYMBOL NAME TOO LONG
Symbol names in 8086 cannot exceed 31 characters.
CONDITIONAL ASSEMBLY GENERATED

CONYV86 has assumed that it is possible that the operand of this PUSH or POP
instruction is the PSW. Conditional assembler directives have been generated
to take this possibility into account. If you know the operand is the PSW, you
can substitute the appropriate mapping from Appendix A for:

s POPPSW (Using EXACT Control)
e POPPSW (Using APPROX Control)
e PUSH PSW (Using EXACT Control)
¢ PUSHPSW (Using APPROX Control)

On the other hand, if you know the operand is definitely not the PSW, you can
substitute the appropriate mapping from Appendix A for:

e POPrw (Using either EXACT or APPROX)
e PUSH w (Using either EXACT or APPROX)

If you cannot determine whether the operand is the PSW, you should desk-
check or single-step your source program until you are able to make that deter-
mination. Otherwise, the conditional assembly statements placed by CONV 86
in your OUTPUT file will not assemble under version V2.0 of the MCS-86
Macro Assembler.

UNKNOWN INSTRUCTION ASSUMED TO BE A MACRO

The converter is unable to recognize this statement and has assumed that it is a
macro call. You should verify this assumption and recode if necessary.

GENERATED LABEL MIGHT NEED TO BE DECLARED LOCAL

The converter has generated a label within a macro definition. This label must
be made local if the macro is invoked more than once.

(NO)COND CONTROL DELETED

No corresponding control exists for the 8086 assembler. No manual editing is
required for this caution.

(NO)MACRODEBUG CONTROL DELETED

No corresponding control exists for the 8086 assembler. No manual editing is
required for this caution.

METACHARACTER OR PARENTHESIS FOUND IN IRPC STRING

A ‘%%, ‘C or ‘) character was left in an IRPC string but will not be correctly
interpreted by the 8086 assembler. This requires your attention.

CONV86

CONV86 Editing Converter Output

35 EXPRESSION ASSUMED TO BE A CONSTANT

CONV86 has not been able to determine what type of expression is in this
instruction. CONV86 has assumed that the expression is a numeric constant. If
this assumption is incorrect, you should examine the resulting 8086 statement
and recode the mapped expression to suit your intent. You may find it helpful to
insert additional labels.

36 SYMBOLIC EXPRESSION MAY BE CONTEXTUALLY INVALID FOR ASM86

A symbolic expression has been encountered in a context in which the 8086
assembler allows expressions containing only two type of operands:

a. Numeric constants, and

b. Macro symbols (preceded or followed by a ‘%’) that evaluate to numeric
constants.

If the expression contains symbols which do not conform to b, above, they must
be replaced by their numeric values or redefined via the % SET macro.

APPENDIX A
INSTRUCTION MAPPING

Following are instruction mappings from 8080/8085 to 8086 assembly language.

Operands are
follows:

mapped according to Appendix B. Operand designations are as

ib = byte immediate mn = near memory
iw = word immediate rb = byte register
mb = byte memory rw = word register

mw = word memory

Similarly, ib’ refers to the mapping of ib, iw’ refers to the mapping of iw, and so on.

Thus, if B=rb,

then rb’ = CH. But if B = rw, then rw’ = CX.

Constructs of the form L__n are generated internally by CONV86 for use as labels in
mappings of conditional CALLs, conditional RETurns; conditional JMPs.

8080/8085 8086 Remarks

AClib ADC AL,ib’

ADC rb ADC AL,rb’

ADDrb ADD AL,rb’

ADIib ADD AL,ib’

ANATb AND AL,rb’

ANIrb AND AL,ib’

CALL mn CALL mn’

CCmn JNBSHORTL__n (L_n inserted as label for
CALL mn’ instruction following CALL)

CMmn JNSSHORT L__n (L_n inserted as label for
CALL mn’ instruction following CALL)

CMA NOT AL

CMC CMC

CMP rb CMP AL,rb’

CNC mn JNAE SHORTL__n (L_n inserted as label for
CALL mn’ instruction following CALL)

CNZ mn JZSHORTL__n (L_n inserted as label for
CALL mn’ instruction following CALL)

CP mn JSSHORTL__n (L_n inserted as label for
CALL mn’ instruction following CALL)

CPEmn JNPSHORT L__n (L_n inserted as label for
CALL mn’ instruction following CALL)

CPlib CMP AL,ib’

CPO mn JPSHORT L __n (L_n inserted as label for
CALL mn’ instruction following CALL)

CZmn JNZSHORTL _n (L_n inserted as label for
CALL mn’ instruction following CALL)

Instruction Mapping
8080/8085 8086 Remarks
DAA DAA
DADrw ADD BX,rw’ (Using APPROX Control)
" DADrw LAHF (Using EXACT Control)
ADD BX,rw’
RCR SI,1
SAHF
RCL S1,1
DCRrb DECrb’
DCX rw DEC rw’ (Using APPROX Control)
DCX rw LAHF (Using EXACT Control)
DEC rw’
SAHF
DI CLI
El STI
HLT HLT
IN ib IN AL, ib’
INRrb INCrb’
INX rw INC rw’ (Using APPROX Control)
INX rw LAHF (Using EXACT Control)
INC rw’
SAHF

CONV86

CONV86

Instruction Mapping

8080/8085 8086 Remarks
JCmn JBSHORT mn’ (For forward short branch)
JC mn JBmn’ (For backward short branch)
JCmn JAE SHORT L_n (Otherwise)

JMP mn’
JM mn JS SHORT mn’ (For forward short branch)
JMmn JSmn’ (For backward short branch)
JM mn JNS SHORT L__n (Otherwise)

JMP mn’
JMP mn JMP SHORT mn’ (For forward short branch)
JMP mn JMP mn’ (Otherwise)
JNC mn JAE SHORT mn’ (For forward short branch)
JNC mn JAE mn’ (For backward short branch)
JNC mn JNAE SHORTL__n (Otherwise)

JMP mn’
JNZ mn JNZ SHORT mn’ (For forward short branch)
JNZ mn JNZ mn’ (For backward short branch)
JNZ mn JZSHORTL__n (Otherwise)

JMP mn’
JP mn JNS SHORT mn’ (For forward short branch)
JP mn JNS mn’ (For backward short branch)
JPmn JSSHORTL_n (Otherwise)

JMP mn’
JPEmn JP SHORT mn’ (For forward short branch)
JPE mn JP mn’ (For backward short branch)
JPE mn JNP SHORTL__n (Otherwise)

JMP mn’
JPO mn JNP SHORT mn’ (For forward short branch)
JPOmn JNP mn’ (For backward short branch)
JPOmn JPSHORT L__n (Otherwise)

JMP mn’
JZmn JZ SHORT mn’ (For forward short branch)
JZmn JZmn’ (For backward short branch)
JZmn JNZSHORTL__n (Otherwise)

JMP mn’

A-3

Instruction Mapping

8080/8085 8086 Remarks
LDA mb MOV AL,mb’
LDAX rw MOV Si,rw’
LODS DS:M(Sl]
LHLD mw MOV BX,mw’
LXIrw,iw MOV rw’,iw’ (When 2nd operand immed. or near)
LXIrw,iw LEA rw’,iw’ (When 2nd operand is byte or word)
MOV rb1,rb2 MOV rb1’,rb2’
MOV M, rb MOV M[BX], rb’
MVIrb,ib MOV rb’,ib’
MVIM, ib MOV M[BX], ib’
NOP NOP XCHG AX,AX (1 byte, 3 clocks)
ORATb ORAL,rb’
ORIlib ORAL,ib’
OUTib OUT ib’, AL
PCHL JMP BX
POP rw POP rw’ (For EXACT or APPROX when rw is
definitely not PSW)
POP PSW POP AX (Using APPROX Control)
XCHG AL, AH
POP PSW POP AX (Using EXACT Control)
XCHG AL, AH
SAHF
POP rw % IF (%EQS (Using APPROX when rw
(rw’,AX)) THEN(could be PSW)
POP rw’
XCHG AL, AH
JELSE(
POP rw’
JFI
POP rw %I|F (%EQS (Using EXACT Control when rw
(rw’,AX)) THEN(could be PSW)
POP rw’
XCHG AL, AH
SAHF
JELSE(
POP rw’

)FI

CONYV86

CONV86

Instruction Mapping
8080/8085 8086 Remarks
PUSH rw PUSH rw’ (For EXACT or APPROX when rw is
definitely not PSW)
PUSH PSW LAHF (Using EXACT Control)
XCHG AL, AH
PUSH AX
XCHG AL, AH
PUSH PSW XCHG AL, AH (Using APPROX Control)
PUSH AX :
XCHG AL, AH
PUSH rw %IF (%EQS (Using APPROX Control when rw
(rw’,AX)) THEN(could be PSW)
XCHG AL, AH
PUSH rw’
XCHG AL, AH
JELSE(
PUSH rw’
YFI
PUSH rw %IF (%EQS (Using EXACT Control when rw
(rw’,AX)) THEN(could be PSW)
LAHF
XCHG AL, AH
PUSH rw’
XCHG AL, AH
YELSE(
PUSH rw’
YFi
RAL RCL AL,1
RAR RCR AL,1
RC JNBSHORT L_n (L_n inserted as label for
RET instruction following RET)
RET RET
RIM ***error***
RLC ROL AL,1
RM JNSSHORTL__n (L_n inserted as label for
RET instruction following RET)
RNC JNAE SHORTL__n (L_n inserted as label for
RET instruction following RET)
RNZ JZSHORT L _n (L_n inserted as label for
RET instruction following RET)
RP JSSHORTL_n (L_n inserted as label for
RET instruction following RET)
RPE JNPSHORTL__.n (L_n inserted as label for
RET instruction following RET)
RPO JPSHORTL_n (L_n inserted as label for
RET instruction following RET)
RRC ROR AL,1
RSTib INT ib’
RZ JNZSHORT L_n (L_n inserted as label for
RET instruction following RET)

A5

Instruction Mapping

A-6

8080/8085 8086 Remarks
SBBrb SBBAL,rb’
SBlib SBBAL,ib’
SHLD mw MOV mw’,BX
SIM **rerror***
SPHL MOV SP,BX
STAmb MOV mb’,AL
STAX rw MOV DI, rw’

MOV DS:[Di],AL
STC STC
SuUBrb SUB AL,rb’
SUlib SUB AL,ib’
XCHG XCHG BX,DX
XRA b XORAL,rb’
XRlib XORAL,ib’
XTHL POP SI

XCHG BX,SI

PUSH SI

unknown expr

unknown’ expr’

CONV86

APPENDIX B
CONVERSION OF EXPRESSIONS
IN CONTEXT |

The following describes how 8080/8085 expressions are converted to 8086 expres-
sions according to the context in which an operand or expression occurs.
The context is simply what CONV86 infers from the use of the operand in the
instruction:

ib = byte immediate

iw = word immediate

mb = byte memory

mw = word memory

mn = near memory

rb = byte register

rw = word register

M is defined to be a byte located at absolute location 0. In contexts 3 and 5 below,
forward-referenced memory items are treated as ‘‘unknown.”’

1. Context=ib
e Operand = ib: expr = expr’
¢ Operand = iw: expr = LOW(expr’)

¢ Operand = mn, mw, mb, or unknown: ' ?
If REL control, then
expr => LOW DGROUP:(expr’)
If ABS control, then
expr =~ LOW(expr’)

2. Context=iw
e Operand = ib or iw: expr = expr’

¢ Operand = mb, mw, mn, or unknown?:
If REL control, then
expr > OFFSET DGROUP:(expr’)
If ABS control, then
expr = OFFSET(expr’)

3. Context=mb
e Operand = mb: expr = expr’
® Operand = mn or mw or unknown: expr = BYTE PTR(expr’)
e Operand = ib or iw: expr = M[expr’]

4. Context=mn
e Operand = mn: expr = expr’
¢ Operand = mb or mw or unknown: expr = NEAR PTR(expr’)
e Operand = ib or iw: expr > NEAR PTR M[expr’]

5. Context = mw
® Operand = mw: expr = expr’
e Operand = mb or mn or unknown: expr = WORD PTR(expr’)
e Operand = ib or iw: expr > WORD PTR M[expr’]

1. mn, mw, and mb are illegal in 8080 in this context, but give an implicit LOW.

2. unknown generates Caution Message 17.

B-1

Conversion of Expressions in Context

B-2

Context =rb

Operand = rb:

A— AL

B—> CH

C—-CL

D - DH

E - DL

H — BH

L—>BL

Operand = mb:M - M[BX]

Context = rw

Operand = rw:
B—>CX

D -+ DX

H - BX

SP — SP

PSW = AX

CONVS86

APPENDIX C
ASSEMBLER DIRECTIVES MAPPING

This appendix shows how 8080/8085 assembler directives are converted by CONV86
into 8086 assembler directives. Expression mapping is described in Appendix B.
Context symbols (for instance, ‘“‘expr’’, ‘“mn’’, and so on) used as directive
operands are mapped according to Appendix B.

In certain cases (EQU, IRP, macro call, and SET), it is possible to determine that an
assignment is being made to a byte or word register. In such cases, the appropriate
rb or rw expression conversion is performed. The STKLN expression is converted in
the prologue (see Chapter 1, ‘‘Functional Mapping’’).

Table C-1. Assembler Directives Mapping

EXTRN name-list

EXTRN name:usage-list’

NAME name

NAME name’

ORG mn

ORG mn’

PUBLIC name-list

PUBLIC name-list’

8080/8085 8086 NOTES
ASEG prev-seg ENDS
ABS_0 SEGMENTBYTEATO
CSEG prev-seg ENDS
CODE SEGMENT WORD PUBLIC 'CODE’
DB expr-list DB expr-list’
DS expr DB expr’ DUP (?)
DSEG prev-seg ENDS
DATA SEGMENT WORD PUBLIC 'DATA’
DW expr-list DW expr-list’
END [mn] prev-seg ENDS
END [mn’]
name EQU expr name’ EQU expr’

STKLN expr ***deleted*** If the REL control (a default) is
used, STKLN converts to informa-
tion in the prologue. Refer to
Chapter 1, ‘‘Functional Mapping.”

aSETb % SET (a’,b%) If the symbol being defined is
never set to a non-constant.

PURGE a’ If the symbol being defined is ever
aEQU b’ set to a non-constant and the SET
is not self-relative.
T_a'EQUb’ If the symbol being defined is ever
PURGE a’ set to a non-constant and the set
a’' EQUT__a’ is self-relative, e.g., X SET X +5.
PURGET_a’

IFa %IF (a’) THEN (

ELSE)ELSE (

ENDIF)FI

Assembler Directives Mapping

C-2

Table C-1. Assembler Directives Mapping (Cont’d.)

8080/8085

8086

NOTES

aMACROWD,...

%*DEFINE (@'(b’,...))
LOCALc ... (

All local labels for the macro (c’...)
are moved to the local list in the
macro definition, with blanks
replacing commas. LOCAL
statements disappear. The word
LOCAL is not produced if there are
no local labels.

The parentheses around b’,... are
omitted when the parameter list is
null.

LOCALc, ...

ENDM

If this directive closes a macro.

or IRPC definition.

mcallb, ...

%mcall (b’, ...)

The parentheses are omitted
when the parameter list is null.

IRPa,b

%IRP(a’,b’)c’ .. .(%(

All local labels for the macro (c’...)
are moved to the local list in the
macro definition, with bianks
replacing commas. LOCAL
statements disappear.

IRPCa,b

%IRPC(a’,b’)c’...(%(

All local labels for the macro (c’...)
are moved to the local list in the
macro definition, with blanks
replacing commas. LOCAL
statements disappear.

REPT a

%REPT(a’)c’...(%(

All local labels for the macro (c’...)
are moved to the local fist in the
macro definition, with blanks
replacing commas. LOCAL
statements disappear.

EXITM

YBEXIT

CONV86

APPENDIX D
RESERVED NAMES

A name appearing in an 8080/8085 expression may have a special 8086 interpreta-
tion (for instance, AL or TEST), or it may be reserved for a segment or group name
(for instance, CODE). Except for STACK, which is converted to STACK__BASE,
each such name is automatically converted by CONV86 by appending an underscore
to it (for instance, AL__ or TEST__). The 8080 reserved word MEMORY is treated

specially.

The following ASM86 reserved names are modified by CONV86:

AAA
AAD
AAM
AAS
ABS

AH

AL
ASSUME
AT

AX

BH

BL

BP

BX
BYTE
CBW
CH

CL

CLC
CLD

CLI
CMPS
CODEMARCO
COMMON
Cs
CWD

CX
DAS
DD
DEC
DEFINE
DH

DIv

DL
bup
DWORD
DX
ELSE
ELSEIF
ENDIF
ENDM
ENDP
ENDS
EQS
ES
ESC
EVAL
EXIT
FAR
GES
GROUP
GTS

IDIV
IMUL
INC
INCHAR
INT
INTO
IRET
JA
JAE
JB
JBE
JCXZ
JE
JG
JGE
JL
JLE
JNA
JNAE
JNR
JNBE
JNE
JNG
JNGE
JNL
JNLE

JNO
JNP
JNS

JO

JS
LABEL
LAHF
LDS
LEA
LEN
LENGTH
LES
LOCK
LODS
LOOP
LOOPE
LOOPNE
LOOPNZ
LOOPZ
LTS
MASK
MATCH
METACHAR
MODRM
MOVS
MUL

Table D-1. Reserved Names

NEAR
NEG
NES

NIL
NOSEGFIX
NOTHING
OFFSET
PARA
POPF
PREFX
PROC
PROCLEN
PIR
PURGE
PUSHF
RCL
RCR
RECORD
RELB
RELW
REP
REPE
REPEAT
REPNE
REPNZ
REPZ

ROL
SAHF
SAL
SAR
SCAS
SEG
SEGFIX
SEGMENT
SHORT
Sl
SIZE
SS
STD
STl
STOS
STRUC
SUBSTR
TEST
THIS
TYPE
WAIT
WHILE
WIDTH
WORD
XLAT

The names CGROUP, CODE, CONST, DATA, and DGROUP are reserved by
CONV86 to set up a PL./M-86 environment.

The assembler-reserved symbols ? and ??SEG are not permitted as user mnemonics.

APPENDIX E
MACRO CONSTRUCT CONVERSION

All macro definitions and calls will be translated to their 8086 macro processing
language equivalents. However, macro related constructs require special conversion.

The following 8080/8085 macro constructs are converted to their 8086 equivalent as

shown:

Table E-1. Macro Construct Conversion

8080 8086

CONSTRUCT EQUIVALENT NOTES

i %’ Within a macro definition body.

! %1 When quoted or within a list or IRPC string.

NUL operand %EQS(operand’,%0) Within any expression.

<list> %(list’) Within any macro argument field, but ‘< >’ is
stripped when surrounding an IRPC string.

(%1(Within < > or ‘’ in macro call parameter,
macro definition, IF expression or body, or
SET body.

) %1) Within < > or ‘’ in macro call parameter,
macro definition, IF expression or body, or
SET body.

Y%expression expression’ Within macro argument field.

symbol %(symbol’) When symbol is a macro parameter and is
being passed to another macro in an argu-
ment field that does not use %.

symbol %symbol’ When symbol is a parameter or local symbol
in a macro definition, a macro itself, or
defined with a SET directive.

% %1% Within quotes when not causing
concatenation.

& % Concatenation translation.

E-1

APPENDIX F
SAMPLE CONVERSION
AND LISTINGS

This appendix consists of:

Figure F-1. 8080 Sort Routine Source File
Figure F-2. CONV86 PRINT File of Conversion of 8080 Sort Routine

Figure F-3. MCS-86 Macro Assembler Listing of Conversion of 8080 Sort
Routine

Figure F-4. MCS-86 Macro Assembler Listing of Originally Coded 8086 Sort
Routine

Please note that the CONV86 OUTPUT file was edited before submitting it to
ASMSB86 for assembly. The OUTPUT file was edited as follows:

1.

To retrieve PL/M-86 stack parameters, code (corresponding to lines 44-47 in
Figure F-3) was inserted as described in Chapter 3.

To correct incomplete register mapping due to mnemonics appearing in an
IRPC string, IRPC calls have been deleted at lines 69 and 85 in Figure F-2, and
the code has been expanded by hand to that at lines 91-94 and 132-133 in Figure
F-3. This edit is in response to the converter generated caution.

For space/time considerations, only the necessary LAHF/SAHF instructions
were retained from the OUTPUT file. Since the file was converted using the
(default) control EXACT, flag-preserving code for all occurrences of DAD,
DCX, INX, and PUSH/POP PSW was generated. You can determine which
flag-preserving code has been retained by comparing Figures F-2 and F-3

F-1

Sample Conversion & Listings

CONYV86

3 MACROFILEI:Ff1:) NOOBJECT

CERRFRRBARRERARRRR SRR AR AR AR ABARATRRERRDRNRRERERR AR S

A PL/M callable subroutine:
CALL SORTI{.A1,.N)

Data area follows

T R T I TR

Socts the acray A1, containing N words,

At entey BC points to the array At, and

DE points to N. Two pointers to eleaments of A1 are
incremented in two loops. The outer loop steps D&
through the elements of At1. Tne innec lLoop steps

HL through the elements of A1 that follow DE. At
each step of the iuner loop, the items at HL and DE
ace excnanged, if required, so that at the end of
the innes loop, the item at DE is larger tha all

the items that follow it. The iteam at DZ is then in
its proper position, so D& is increnented to
complete one iteration of the outer loop.
EEZRBARRABEBEATRERIRRRSRARARRREARRRERERRRTILAERIRABRIRNTRALLE

DSES
TEST: DS 2
s Bezin code area
CSEG
PUBLIC SORT
SWAP MACRO
HH Inis macso swaps two bytes pointad to by HL and DE.
LDAX D
MoV c,M
MOV M, A
XCHG
MOV M,C
XCHS
INDM
; Test = addreess of tne last =2lement of At.
SORT: KCH3 3 TEST = Ta - 1) % 2 &+ A%
MoV .M
INK H
MoV .M
XCHG H N
ocX d H -1
DAD E ; ¥ 2
DAD 3 H + WA
SHLD TIST H = T&EST

Figure F-1A. 8080 Sort Routine Source File

F-2

CONVS86 Sample Conversion & Listings

H OUTER %J0P: DO D& = .A1 TO TEST BY 2;

MOV E,C ;3 BC CONTAINS .A1
M0V D,B
OUTTST=: “DA TEST ; IF DS > TEST THEN RETURN
SUB B -
LDA TEST + 1
SBB D
RC
; INNER L00P:x DO HL = DE+2 [0 TEST BY 2
oV L E
Mov H4,D
REPT 2
INX 4
ENDM
tHL = DE & 2
; IF HL > TEST THEN G0TO OQUTINC
INTST> LDA TEST
SUB A
LDA TSST + 1
SBB H
JC OUTINC

s IF A1{H.) < A1{DE) THEN GOTO ININC
s As a side effect, HL and DE are incrcemented by 1
; to point to the nigh bytes of their ascay elements.

LDAK D
SUB M
IRPC Z,DH
14X z
ENDM
LDAX [}
s88 M
JNe ININC

Figure F-1B. 8080 Sort Routine Source File

Sample Conversion & Listings

CONV86

; Exchange AIDE) with AIHLZ). Leave H. aad DE
. pointing to HIGH bytes.

; Point HL

; DE an HY
; set DI =
ININC:

gxchange low

; 2nd of outer loop.

QUTINC:

SWAP
IRP Z,<D,H>
aCX Z ;¢ Put {Z) D and H in tneir plaze
ZNDM
bytes
SWAP
and DE to high bytes
IRPC Z,DH
INX Z
ENDM
point to HIGH bytes. For the next itsration,
Pcevious D&, HL = 2 #+ Previous Hi.
DeCx D
INX H
Jup INTST
3et DE = DI + 2
REPT 2
INX D
ENDM
JMue JUTTIST
END

Figure F-1C. 8080 Sort Routine Source File

CONV86

Sample Conversion & Listings

ASM30 TO ASM35 CONVZRTER

ISIS-II ASM80 TO A3M85 CONVERSION OF FILE :F1:SORT80
ASM36 PLACED IN :F1:SORT80.486

CONVERTER V2.0 [NVOKED BY:

*F12CONV8S5 :F1:SORT30 NOSOURCELIST

8086 PROGRAM

1

W RNV EWN

$ WORKFILES{:F1:,:F1:) NOOBJECT
CGROUP GROUP ABS_0,CODE,CONST,DATA,STACK,MEMORY
DGROUP GROUP ABS_),CODE,CONST,DATA, STACK, MEMORY
ASSUME DS:DGROUP,CS:CGROUP,SS»DGROUP
CONST SEGMENT WORD PUBLIC *CONST*
CONST ENDS
STACK SEGMENT WORD STACK "STACK®*
STACK_BASE L ABEL BYTE
STACK ENDS
MEMORY SEGMENT WORD MEMORY *MEMORY®
MEMORY_ LABEL BYTE
MEMORY ENDS
ABS_0 SEGMENT BYTE AT 0
M L ABEL BYTE
4*DEFINE IREPT [N) .OCALS [BODY)) LOCAL MACRO [
F*DEFINE {MACRO) LOCAL 3L0CALS [%$BODY)
$REPEAT '3N) [$MACRO))
$*DEFINE [IRP [PARM,PLIST) LOCALS [BODY)) LOCAL MACRO LIST [
%%DEFINE [MACRO) LOCAL 3L0CALS !%BODY)
$®#DEFINE [LIST) [APLIST)
FIF {FLEN{F®*LIST) £Q 0) THEN |
ADEFINE [#PARM) [%0)
$MACRO)
ELSE |
SWHILE I$LEN[%LIST) NE 0) [
AMATCHl 3PARM,LIST) [3¥.IST)
$MACRO))
)
$*DEFINE [IRPC {PARM,TEXT) L0CALS [BODY)) LOCAL MACRO LIST |
F*OEFINE [MACRO) LOCAL %LOCALS [$BODY)
%*DEFINE [LIST) [#TEXT)
$IF [JLEN{#¥®LIST) £Q O) THEN !
EZDEFINE [%PARM) [%0)
EMACRO)
ELSE {
SWHILE [%LEN[%#%LIST) NE 0) [
¥DEFINE [4PARM) I[2#*SUBSTRI $*LIST,1,1))
4DEFINE [LIST) [#*SUBSTRIX%.IST,2,9999))
FMACRO))

EEERERAAR AR R AR IR AR AR RN R RN IR R B RN RN RN AR R AR RN AR RN R
A PiL/M callable subroutine:

CALL SORTI.A1,.N)
Sorts the array A1, containing N words.
At entey BC points to the array A1, and
DE points to N. Two pointers to elements of A1 are
incremented in two loops. The outer loop steps DE
through the elements of At. The inner loop steps

s ap as we as a0 ae A

Figure F-2A. CONV86 PRINT File Conversion of 8080 Sort Routine

Sample Conversion & Listings

CONV86

ASM30 TO ASM86 CONVERTER

10
11
12
13
14

HL theough the elements of At that follow DE. At
each step of the ianer loop, the items at H. and DE
are exchanged, if required, so that at the end of
the innes loop, the item at DE is larger tha all
the items that follow it. The item at DE is then in
its proper position, so DE is incremented to
complete one itecation of the outer loop.
SEARRRE AR R R RN R R R AN R PR SRR R RN BRI B R AN ANRAANRRNNRENRE R
bata area follows
ABS_0O ENDS
DATA SEGMENT WORD PUBLIC *DATA?
TEST_ DB 2 pue [?)
H Begin code acrea
DATA ENDS
CODE SEGMENT WORD PUBLIC *CODE®
PUBLIC SORT
$*DEFINE [SWAP) |
%* This macro swaps two bytes pointed to by HL and DE.

P TR T Y]

MoV SI,DX
u0DS DS=MISI]
MOV CL,MIBX]
MoV MIBX1,AL
XCHG BX, DX

MOV M{BX],CL

XCHG BX, DX

)
Test = address of the last element of Afl.
RT:

v

ORT XCHG BX, DX ; TEST = {N - 1) % 2 + .a1
MOV DL ,MIBX]
LAHF
INC BX
SAHF
MOV DH,MIBX]
XCHG BX, DX H o
LAHF
DEC BX
SAHF H - 1)
LAHF
ADD BX , BX
RCR SI,1
SAHF
RCu SI,1 : * 2
LAHF
ADD BX,CX
RCR SI,1
SAHF
RCL ST, 1 : + WAl
MOV WORD PTRITEST_),BX : = TEST
& OUTER LOOP= DO DE = .A1 TO TEST BY 2;
MOV DL, CL ; BC CONTAINS LAt
MOV DH,CH
OUTTST» MOV AL, TEST_ ; IF DE > TEST THEN RETURN
SUB AL , DL
MOV AL, TEST_+1
SBB AL, DH
JNB SHORT &L_1
RET

Figure F-2B. CONV86 PRINT File Conversion of 8080 Sort Routine

CONVS86 Sample Conversion & Listings

ASM80 TO ASM86 CONVERTER

50 L_1:
51 : INNER LOOP> DO HL = DE+2 TO TEST BY 2
52 MOV BL, DL
53 MOV BH, DH
Sy 4REPT [2) %1
55 YAHF
55 INC BX
55 SAHF
56))
57 ¢HL = DE + 2
58 ; IF HL > TEST THEN GOTO OUTINC
59 INTST: MOV AL, TEST_
60 5UB %, BL
61 MOV AL, TEST_+1
62 SBB AL, BH
63 JB SHORT OUTINC
64 s IF At{HL) < A1{DE) THEN GOTO ININC
65 : As a side effect, HL. and DE arfe incremented by 1
66 : to point to the nigh bytes of their array elements.
67 MOV SI,DX
67 LODS DS:zMiST)
68 SUB AL, MIBX]
69 $IRPC {Z,DH) (%I
#%% CAUTION 002 ###%# 3030 REGISTER MNEMONIC APPEARING IN IRPC STRING
70 LAHF
70 INC } ¥
70 SAHF
71))
72 MOV SI,DX
12 L0DS DS:M#SI]
73 SBB AL, M. BX]
14 JAE SHORT ININC
75 ;s Exchange AIDE) with AlHi). Leave HL and DE
76 ; pointing to HIGH bytes.
17 4SWAP
78 3IRP 12,3{Dx,BX)) 1%
79 LAHF
79 DEC | ¥
79 SAHF 4* Put !Z) D and H in their place
80 N
81 ; Exchange Low bytes
82 H
83 £SWAP

84 ; Point HY and DE to high bytes
$IRPC (Z,DH) (%!
#&% CAUTION 002 ##% 8080 REGISTER MNEMONIC APPEARING IN IRPC STRING
86

LAHF
86 INC %z
86 SAHF
87))

: DE an HL point to HIGH bytes. For the next iteration,
89 : set DE = Previous DE, HiL = 2 + Previous HL.
90 ININC: LAHF

30 DEC DX
90 SAHF
91 LAHF
91 INC BX

Figure F-2C. CONV86 PRINT File Conversion of 8080 Sort Routine

F-7

Sample Conversion & Listings

CONV86

ASMB80 TO ASM86 CONVERTER

91
92
93

SAHF
JMp

INTST

; End of outer loop. Set DE = DE + 2

OUTINC:

CODE

2 CAUTIONIS)

$REP
LAHF
INC
SAHF
))
JMP
ENDS
END

T i2) (K

DX

QUTTST

END OF ASM80 TO ASM86 CONVERSION

Figure F-2D. CONV86 PRINT File Conversion of 8080 Sort Routine

CONV86 Sample Conversion & Listings

MCS-35 MACRO ASSEMBLER SORT3D

ISIS-II MCS-35 MACRO ASSEMBLER V2.0 ASSEMBLY 0F MODULE SOAT30
NO OBJECT MODULE REQUESTED
ASSEMBLER INVOXED BY: :F3:ASM35 =rf1:S0RT30.A35

.0C O0BJ LINE SOURCE

$ WORKFILES{:F1:,:F1:) NOOBJECT

CGROUP GROUP ABS_0,CODE,CONST,DATA, STACK,MEMORY

DGROUP GROUP ABS_0,CODE,CONST,DATA, STACK,MEMORY
ASSUME DS=>DGROUP,CS:CGROUP, SS=DGROUP

CONST SEGMENT WORD PUBLIC *CONST®

CONST ENDS

STACK SEGMENT WORD STACK *STACK'

RPN
VMEWN=2OWE~NOV FWN -

0000 STACK_BASE LABEL BYTE
———— STACK ENDS
-———— MEMORY SEGMENT WORD MEMORY *MEMORY®
0000 MEMORY__ L ABEL BYTE
- MEMORY ENDS
- ABS_0 SEGMENT BYTE AT 0
0000 M LABEL BYTE
16 +1
17 +1
18 SERERER AR AR AR AR RS R R R AR AR R RN R RN R R R IR R RN RRANRED
19 ; A PL/M callable subroutinex
20 ; CALL SORT!.A1,.N)
21 : Sorts the array A1, containing N woeds.
22 ; At entey BC points to the acray A1, and
23 ; DE points to N. Two pointers to elements of At are
24 « incremented in two loops. The outer loop steps DE
25 ; through the elements of At. The inner loop steps
26 s HL through the elements of At that follow DE. AL
27 ; each step of the inner loop, the items at HL and DE
28 ;s are exchanged, if cequired, so that at the end of
29 + the inner loop, the item at DE is lacger tha 3all
30 s the items that follow it. The item at DE is then in
31 s its proper position, so DE is incremented to
32 ; complete one iteration of the outer loop.
33 SEEEERERE IR RR AR RN AR R R R AR NN R AR R AR NN AR RA RO RN RN R
34 H Data area follows
EE 35 ABS_0 ENDS
ma— 36 DATA SEGMENT WORD PUBLIC *DATA*
0000 [2 37 TEST_. DB 2 pue I?)
??
)
38 B Begin code area
———- 39 DATA ENDS
———— 40 CODE SEGMENT WORD PUBLIC *CODE*
41 PUBLIC SORT
42
43 ; Test = address of the Last element of Al.
0000 44 SORT:
0000 5B 45 pPoP BX > *%#%% CODE INSERTED TO
0001 59 46 poPpP CcX ; ##%% RETRIEVE PL/M-86
0002 5A u7 poe DX ; %%EE® STACK PARAMETERS

Figure F-3A. MCS-86™ Macro Assembler Listing
of Conversion of 8080 Sort Routine

Sample Conversion & Listings

CONV86

M S-86 MACRO ASSEMBLER SORT30
L0C OBJ LINE SOURCE
0003 53 48 PUSH BX ; ¥#%% LCHAPTER 3)
0004 87DA 49 XCHG BX, DX s TEST = IN - 1) * 2 + .A%
0006 84970000 R 50 MOV DL,MZBX]
0004 43 51 INC BX
000B 8AB70000 R 52 MOV DH,M>»BX 1]
O00F 87DA 53 XCHG BX, DX H N
0011 4B 54 DEC BX H - 1)
0012 03DB 55 ADD BX, BX H * 2
0014 03D9 56 ADD BX,CX H + oA
0016 891E0000 R 57 MoV WORD PTRITEST_),BX H = TEST
58 OUTER L0OO0P: DO DE = .A1 TO TEST BY 23
001A 8AD1 539 MoV DL ,C4L ; BC CONTAINS .A1
001C B8AF5 60 MoV DH,CH
0J01E A00009 R 61 QUTTST: MOV AL, TEST_. 3 IF DE > TEST THEN RETURN
0021 2acC2 62 SUB AL, DL
0023 A00100 R 63 MOV AL ,TEST _+1
0026 1ACS 54 SBB %.DH
0028 7301 65 JNB SHORT L_t
002a C3 66 RET
002B 57 L
68 ¢« INNER L00P» DO HL = DE+2 TO T&ST BY 2
002B B8ADA 69 MoV BL, DL
002D B8AFE 70 MOV BH, DH
7t +1
72 +2
13 +3
002F 43 74 +3 INC BX
75 +3
0030 43 16 +3 INC BX
17 +3
78 sHL = DE + 2
79 ; [F HL > TEST THEN GOTO OUTINC
0031 A00000 R 80 INTST» MOV AL, TEST_
0034 2ac3 81 SUB AL, BL
0036 A00100 R 82 MOV L,TEST_+1
0039 tACT 83 SBB AL ,BH
003B 7242 8y JB SHORT QUTINC
85 : IF A1[HL) < A1[DE) THEN GOTO ININC
35 : As a side effect, H. and DE are incremented by 1
87 ;3 to point to the nigh bytes of theirs acray elements.
003D 8BF2 88 MOV SI,DX
003F AC 83 .0DS DS¥M*SI]
0040 24870000 R 90 SUB AL MIBX]
0044 9F 91 LAHF ; ®%#% The TRPC invocation reguires manual editing
0045 42 92 INC DX #%#3¥% The LAHF and SAHF exact mapping is reguired
o046 43 93 INC BX
0047 9E 94 SAHF
0048 8BF2 95 MOV SI,DX
004A AC 96 LODS DS™MISI}
004B 14870000 R 97 SBB AL, MIBX]
004F 7324 98 JAE SHORT ININC
99 ; Bxchange AIDE) with A{HL). Leave HL and DE
100 ; pointing to HIGH bytes.
101 +1

Figure F-3B. MCS-86™ Macro Assembler Listing

of Conversion of 8080 Sort Routine

F-10

CONV86 Sample Conversion & Listings

MCS-86 MACRO ASSEMBLER SORT80
L0C 0BJ “INE SOURCE
0051 8BF2 102 +1 MOV ST DX
0053 AC 103 +1 LODS DSrM*SI]
0054 8ABF0000O R 104 +1 MoV ChL M BX]
0058 88870000 R 105 +1 MoV ~BX1,AL
005C 87DA 106 +1 XCHG BX, DX
005E 888F0000 R 107 +1 MOV M*BX1,CL
0062 87DA 108 +1 XCHG BX, DX

109 +1

110 +1

111 +2

112 +2

113 +2

114 +4

115 +4

116 +4
00564 4A 117 +4 DEC DX

118 +4

119 +4
0065 4B 120 +4 DEC BX

121 H Exchange Low bytes

122 +1
0066 8BF2 123 +1 MOV SI,DX
0068 AC 124 +1 L0DS DS:MISI]
0069 B8A8F0000 R 125 +1 Mov L, MIBX]
006D 88870000 R 126 +1 MoV MIBX1,AL
0071 87DA 127 +1 XCHG BX, DX
0073 B888F0000 R 128 +1 MOV M™BX],CL
0077 87DA . 129 +1 XCHG BX, DX

130 +1

131 s Point HL and DE to high bytes
0079 42 132 INC DX
TRPC call removed and
0074 43 133 INC BX
=% gxpanded by hand

134 s DE an HL point to HIGH bytes. For the next iteration,

135 ; set DE = Previous DE, HY = 2 + Previous HL.
0078 136 ININC: ’
007B 4A 137 DEC DX
007C 43 138 INC BX
007D EBB2 139 JMP INTST

140 ; End of outer loopsi Set DE = DE + 2
007F 141 +1 OUTINC:

142 +2

143 +3
O0TF 42 144 +3 INC DX

145 +3
0080 42 146 +3 INC DX

147 +3
0081 EBY9B 148 JMP OUTTST
- 149 CODE ENDS

150 END

ASSEMBLY COMPLETE, NO ERRORS FOUND

Figure F-3C. MCS-86™ Macro Assembler Listing
of Conversion of 8080 Sort Routine

F-11

Sample Conversion & Listings

CONV86

MCs-85 MACRO ASSEMBLER SORT36

ISIS-II MCS-36 MACRO ASSEMBLER V2.0 AS3EMBLY OF JODULE SORI8S
OBJECT MODULE PLACED IN :F1:S0RT35.0BJ
ASSEMBLER INVOKED BY: :F3:ASM856 :F1:SORT35

L0C 0BJ LINE SOURCE

1 ;lllllllll"lll.lllllll"llllil!lllﬂlll!llll)lllllillll'll
2 ;s A PL/M callable subroutine:

3 B CALL SORT!.A1,.N)

4 : Sorts the array At, containing N words.

5 : At euntry the address of N, and the address of Af

5 ; are on the stack. Two_pointers to elements of A1

7 s are kept in the SI and DI registers. These pointers

8 ; are incremented in two loops. The outer Lloop steps

9 s SI theough the elements of At. The inner loop steps

10 3+ DI through the elements of A1 that follow SI. At each
11 » step of the inne¢ loop, the item at SI is targer than
12 ; all the items that follow it. The item at SI is then in
13 : its proper position, so SI is incremented to
14 ;s complete one iteration of the outer loop.

15 SEARRERRE RN EFRBRERAR IR RBRR RS AL F AR AR B RS RNBEAIARRARABENIRRR

H
16 CGROUP GROUP CODE
17 ; No DS ASSUME is needed, since this foutine
18 ; doesn't reference a DATA segment.
19 ASSUME ‘CSaCGROUP
EEE S 20 cope SEGMENT PUBLIC *CODE®
21 PUBLIC SORT
0000 22 SORT PROC NEAR
00062] 23 ADDR_A1 EQU WORD PTR IBP+6] ; first pacameter
000411 24 ADDR_N EQU WORD PTR _BP+4] ; second parameter
0000 55 25 PUSH Bp ; use BP to accesss parameters
0001 8BEC 26 MoV BP,SP
0003 8B7606 27 Mov SI,ADDR_A1
28 3 Outer loopr DO SI = .A1 BY 2 WHILE SI < CX
0006 8BSEOY 29 MOV BX,ADDR_N
0009 8BOF 30 MOV CX,¥BX] s CX = N
000B 03C9 31 ADD CX,CX H L]
000D O3CE 32 ADD CX,sSI H + WAl
000F 33 OUTTST:
000F 3BFt 34 cMp SI,CX ; IF SI >= CX THEN RETURN
0011 731B 35 JAE EXIT
36 & Inner loop:z DO DI = SI+2 WHILE DI < CX
0013 8b7co2 37 LEA DI,>SI+2] ;DI = ST + 2
0016 38 INTST:
0016 3BF9 39 cMp DI,CX ¢ IF DI >= CX
0018 730F 30 JAE OUTINC ; THEN exit inner loop
001A 8BOY4 41 MoV AX,>SI] ;IF A13SI]
001C 3B05 42 cMP AX,3DI] ; < a1ipId
001E 7304 43 JNB ININC
0020 8705 by XCHG AX,¥DI] ; THEN EXCHANGE A1IDI]
0022 8904 45 Mov [SI],AX ; WITH A1ISI]
0024 46 ININC:
0024 83C702 47 ADD DI,2
0027 EBED 48 JMP INTST
0029 49 QUTINC:

Figure F-4A. MCS-86™ Macro Assembler Listing
of Originally Coded 8086 Sort Routine

F-12

CONVS86 Sample Conversion & Listings

M S-86 MACRO ASSEMBLER SORT86
.0C OBJ LINE SOURCE
0029 83cC702 50 ADD DI, 2
002C EBE1 51 JMe OUTTST
002E 52 EXIT
0028 5D 53 poP BP
002F C20400 Si RET §

55 SORT ENDP
- 56 CODE ENDS

57 END

ASSEMBLY COMPLETE, NO ERRORS FOUND

Figure F-4B. MCS-86™ Macro Assembler Listing
of Originally Coded 8086 Sort Routine

F-13

APPENDIX G

RELOCATION AND LINKAGE
ERRORS AND WARNINGS

Because of the way CONVS86 sets up multiple segments beginning at absolute
location 0 (as described in Chapter 1 under ‘‘Functional Mapping’’), MCS-86
linkage and relocation tools will issue warnings/errors as shown in Table G-1. You
can safely ignore these warnings/errors when they specifically apply to intentional

segment overlap.
Table G-1. MCS-86™ Relocation and Linkage Warnings/Errors
for Segment Overlap
R &L Tool Message ID Message Text
WARNING 14 GROUP ENLARGED
FILE: filename
GROUP: groupname
MCS-86 MODULE: modname
LINKER WARNING 28 POSSIBLE OVERLAP
FILE: filename
MODULE: modname
SEGMENT: ABS_0
CLASS:

INDEX

ABS control (CONV86), 1-6, 2-3
absolute addressing, 3-2
APPROX control (CONV86), 1-11, 2-2

caution messages, 1-13, 3-7
comments, mapping of, 1-10
continuation lines,

in CONV86 command, 2-5

in PRINT file, 3-1
controls (ASM80) mapping, C-1
controls (CONV86), 2-1
conversions, sample, 1-3, 3-1, F-5
cross-development (8080/8085-

t0-8086), 1-2

DATE control (CONVS86), 2-2
directives mapping, C-1
displaced reference, 3-2, 3-3, 3-10

EXACT control (CONV86), 1-12, 2-2
expressions, conversion of, B-1

files, CONV86, 1-2, 1-13

files, cross-development, 1-2

flags, mapping of, 1-9

flag semantics, 8080-8086 differences, 1-12
functional equivalence, 1-11

functional mapping, 1-6

INCLUDED control (CONV86), 2-3
instruction mapping, A-1

instruction queue (8086), 1-11
interrupts, 3-3

label insertion by CONV86, 3-2, A-1
label insertion by user, 3-3

macro call, 1-3

macro conversion, 1-3, E-1

macro definition, 1-3

MACROFILE control (ASM80), 1-10
manual editing, 1-3, 1-13, 3-1, F-1
MODSS control (ASM80), 1-10

NOMACROFILE control (ASM80), 1-10
NOOUTPUT control (CONV86), 2-2
NOPAGING control (CONVS86), 2-2
NOPRINT control (CONV86), 2-2
NOSOURCELIST control

(CONVS86), 1-1, 2-3
NOTINCLUDED control (CONV86), 2-3

operand mapping, B-1

OUTPUT control (CONV86), 2-2

overriding controls (CONV86), 2-5

overriding symbol types, 1-10, 3-9,
3-10, 3-11

PAGELENGTH control (CONVS86), 2-2
PAGEWIDTH control (CONVS86), 2-2
pipeline (8086), 1-11
PL/M linkage conventions (8080 &
8086), 3-6
PL/M parameter passing (8080 &
8086), 3-6
PRINT control (CONV86), 2-2
PRINT file, sample, 1-4, 3-1
program listings, 1-5, F-2, F-5, F-9, F-12
prologues (8086), 1-6
prompting, 2-5

register initialization (8086), 3-2

register mapping, 1-8

REL control (CONV86), 1-6, 2-3, 3-2, 3-11

relative addressing, 3-2

relocation & linkage (8086)
errors/warnings, 1-6, G-1

requirements for conversion, 1-1, 1-3, 3-1

reserved names, 1-10, D-1

SOURCELIST control (CONVS86), 1-1, 2-3
stack, CONV86 handling of, 1-8

stack segment (8086), 1-7

STKLN directive (8080), 1-7, C-1

symbol typing, 1-9

timing delays, software, 1-11
TITLE control (CONVS86), 2-2

WORKFILES control (ASM80), 1-10
WORKFILES control (CONV86), 2-3

Index-1

Notes:

Notes:

Notes:

Notes:

Notes:

- ® MCS-86™ Assembly Language Conve
l Operating Instructions for ISIS-1 Us
980064

REQUEST FOR READER’S COMMENTS

The Microcomputer Division Technical Publications Department attempts to provide documents that m
the needs of all Intel product users. This form lets you participate directly in the documentation proces:

Please restrict your comments to the usability, accuracy, readability, organization, and completenes:
this document.

1. Please specify by page any errors you found in this manual.

2. Does the document cover the information you expected or required? Please make suggestions
improvement.

3. Is this the right type of document for your needs? Is it at the right level? What other type:
documents are needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this document on a scale of 1 to 10 with 10 being the best rating.

NAME DATE

TITLE

COMPANY NAME/DEPARTMENT

ADDRESS

CiTY STATE ZIP CODE

Please check here if you require a written reply. O

) LIKE YOUR COMMENTS ...

locument is one of a series describing Intel products. Your comments on the back of this form will
us produce better manuals. Each reply will be carefully reviewed by the responsible person. All

1ents and suggestions become the property of Intel Corporation.

BUSINESS REPLY MAIL

FIRSTCLASS PERMITNO.1040 SANTA CLARA,CA

POSTAGE WILL BE PAID BY ADDRESSEE

Intel Corporation

Attn: Technical Publications M/S 6-2000
3065 Bowers Avenue

Santa Clara, CA 95051

NO POSTAGE
NECESSARY
IF MAILED
INU.S.A.

intgl
INTEL CORPORATION, 3065 Bowers Avenue, Santa Ciara, CA 95051 (408) 987-8080

Printed in U.S.A.

