

CONV86 Editing Converter Output

Case 2: When Your Converted Program Calls

If your S080/S085 source program calls another routine (written either in MCS-86
Macro Assembly Language or PL/M-S6) which expects arguments to be passed on
the stack, you need to insert 8086 source code in your converted program.

If your original 80S0 source program passed only one argument to the CALLed
routine, that argument was passed in the (B,C) register-pair. Hence you need to
insert:

PUSH CX ;Push (B,C) argument on stack.

immediately before the CALL.

If your original 8080 source program passed two or more arguments to the CALLed
routine, those arguments were passed in the (B,C) register-pair, in the (D,E) register
pair, and remaining arguments on the stack. Hence you need to insert:

PUSH CX
PUSH OX

;Push (B,C) argument on stack.
;Push (D,E) argument on stack.

immediately before the CALL. The remaining arguments (if any) are already on the
stack in the correct order. PL/M-86 return values are placed in AX or AL as
described in Case 1.

Caution Messages

Caution messages do not necessarily imply manual editing, but they do demand
scrutiny. In many cases, CONV86 cannot be sure if an error actually exists (as for
instance, in expression evaluation). This section lists all possible caution messages.
The next section lists caution message descriptions and indicates what manual
editing of the output file may be necessary.

The entire list of caution messages is as follows (note that caution messages 9, 15,
26, and 29 do not exist):

BYTE REGISTER USED IN WORD CONTEXT OR VICE VERSA

2 8080 REGISTER MNEMONIC APPEARING IN IRPC STRING

3 MACRO PARAMETER BOTH CONCATENATED AND USED AS PARAMETER

4 EXPANDED NAME MAY BE RESERVED WHEN CONCATENATED

5 MACRO PARAMETER USED IN BOTH BYTE AND WORD CONTEXTS

6 EQU'D OR SET REGISTER SYMBOL USED IN BOTH BYTE AND WORD CONTEXTS

7 MULTIPLY DEFINED EQU MAY NOT BE ASSIGNED PROPER TYPE

8 UNKNOWN STATEMENT

10 TYPE ASSIGNED TO INCLUDED SYMBOL MAY NOT AGREE WITH DEFINITION

11 TRANSLATION OF NOP MAY NOT YIELD DESIRED RESULTS

12 TRANSLATION OF RST MAY NOT YIELD DESIRED RESULTS

13 8085-SPECIFIC INSTRUCTION CANNOT BE TRANSLATED

14 FORWARD REFERENCE TO A SYMBOL WHICH IS A REGISTER OR [BX] CANNOT
BE CORRECTLY ASSEMBLED

3-7

Editing Converter Output

3-8

16 EXPRESSION ASSUMED TO BE A VARIABLE

17 ADDRESS EXPRESSION MAY BE INVALID FOR 8086

18 INSTRUCTION AS OPERAND CANNOT BE TRANSLATED

19 REGISTER USED IN UNKNOWN CONTEXT

20 OUTPUT LINE TOO LONG; TRUNCATED

21 LABEL ASSUMED TO BE NEAR

22 NOMACROFILE CONTROL DELETED

23 MOD85 CONTROL DELETED

24 SOURCE LINE TOO LONG; IGNORED

~ CURRENTSEGMENTUNKNOWN;CANNOTGENERATEENDS

27 SYMBOL NAME TOO LONG

28 CONDITIONAL ASSEMBLY GENERATED

30 UNKNOWN INSTRUCTION ASSUMED TO BE A MACRO

31 GENERATED LABEL MIGHT NEED TO BE DECLARED LOCAL

32 (NO) COND CONTROL DELETED

33 (NO) MACRODEBUG CONTROL DELETED

34 METACHARACTER OR PARENTHESIS FOUND IN IRPC STRING

35 EXPRESSION ASSUMEDTO BE A CONSTANT

36 SYMBOLIC EXPRESSION MAY BE CONTEXTUALLY INVALID FOR ASM86

CONV86

CONV86 Editing Converter Output

Caution Message Descriptions

BYTE REGISTER USED IN WORD CONTEXT OR VICE VERSA

A register variable defined in an EQU directive or as a macro parameter has
been classed as BYTE or WORD according to its predominant usage. In this
statement, the register variable appears in the opposite context. This is
unacceptable for the 8086, since byte and word register mnemonics are dif
ferent. You should insert the appropriate register mnemonic.

2 8080 REGISTER MNEMONIC APPEARING IN IRPC STRING

The parameter of this IRPC directive is used in a register context. Since 8086
register mnemonics are two characters long, you should change the IRPC direc
tive (possibly to an equivalent IRP).

3 MACRO PARAMETER BOTH CONCATENATED AND USED AS PARAMETER

One of the arguments of this macro is both concatenated and used as a register.
You may need to manually convert the mnemonics yourself.

4 EXPANDED NAME MAY BE RESERVED WHEN CONCATENATED

One of the arguments of this macro is concatenated. You should examine
the resulting symbol and see if it corresponds to the intent of the SOSO/SOS5
source code. You should also check to see if the resulting concatenated name is
reserved. A list of reserved symbols appears in Appendix D.

5 MACRO PARAMETER USED IN BOTH BYTE AND WORD CONTEXTS

A macro argument is used in both byte and word register contexts. Since the
argument can be of only one type, you should manually alter the macro or over
ride the argument type.

6 EQU'D OR SET REGISTER SYMBOL USED IN BOTH BYTE AND WORD CONTEXTS

An EQU or SET symbol is used in both byte register and word register contexts.
You should manually insert the appropriate register mnemonic(s). You may
need to use two EQUs: one for byte usage, and one for word usage.

7 MULTIPLY DEFINED EQU MAY NOT BE ASSIGNED PROPERTYPE

An EQU symbol has been multiply defined, perhaps due to conditional com
pilation. You should eliminate the excess definition(s), and redefine as
necessary. CONVS6 may have assigned the wrong type.

8 UNKNOWN STATEMENT

The converter is unable to recognize this statement, possibly because its
mnemonic is a macro parameter. You should either recode the S080 source to
produce recognizable statements (legal instructions) and submit the recoded
SOSO file to CONV86, or else simply insert the appropriate 80S6 source code in
the OUTPUT file.

3-9

Editing Converter Output

3-10

10 TYPE ASSIGNED TO INCLUDED SYMBOL MAY NOT AGREE WITH DEFINITION

The specified symbol is defined in an INCLUDE file. When the INCLUDE file
is converted, the usage of the symbol may not be the same as inferred by
CONV86 here. You should convert the INCLUDE file and examine the type
CONV86 has assigned to it there, and then ensure that both usages are the same.
If they are not, you should override the assigned usage in either file so as to
make their types identical.

11 TRANSLATION OF NOP MAY NOT YIELD DESIRED RESULTS

An NOP instruction has been converted to XCHG AX,AX. This may not be the
desired mapping, as it assembles into a one-byte instruction (3 clocks).

12 TRANSLATION OF RST MAY NOT YIELD DESIRED RESULTS

An RST instruction has been converted to an INT instruction for the 8086. You
should verify that the original intent of the RST instruction was to cause an
interrupt. You should examine the operand carefully to ensure that the instruc
tion traps to the desired absolute address, and that the intended routine to be
trapped to will be bound to (loaded at) that address.

13 80B5-SPECIFIC INSTRUCTION CANNOT BE TRANSLATED

The 8086 has no counterpart for RIM or SIM. You should recode according to
the 8086 interrupt scheme as described in the 8086 Family User's Manual under
"Interrupts."

14 FORWARD REFERENCE TO A SYMBOL WHICH IS-A REGISTER OR [BX] CANNOT BE
CORRECTLY ASSEMBLED

The 8086 assembler does not accept forward references to registers. You should
move your register EQUs to the beginning of your file.

16 EXPRESSION ASSUMED TO BE A VARIABLE

CONV86 has not been able to determine what type of expression is in this
instruction. CONV86 has assumed that the expression is a variable. If this
assumption is incorrect, you should examine the resulting 8086 statement and
recode the mapped expression to suit your intent. You may find it helpful to
insert additional labels.

17 ADDRESS EXPRESSION MAY BE INVALID FOR 8086

Case 1: Displaced Reference

CONV86 may not have mapped a displaced symbol reference (for instance,
$ + BAZ*(FOO-N» correctly. You can manually check the mapped displace
ment. You may find it simpler (and safer) to insert additional labels or variables
rather than manually calculating displacements.

Case 2: HIGH/LOW Applied to Symbolic Address Expressions

You should check the symbols operated on by the HIGH/LOW functions to
ensure that their alignments in 8086 memory' correspond to their 8080 page
alignments.

CONV86

CONV86 Editing Converter Output

In addition, if you converted using the REL control (a default), you should
insert a group override prefix as follows:

Before Your Editing

LOW(expr)
HIGH(expr)

Case 3: Overly Complex Expressions

After Your Editing

LOW DGROUP:(expr')
HIGH DGROUP:(expr')

It is possible that an overly complex 8080 expression has resulted in unaccept
able MCS-86 source code in your OUTPUT file. You should examine the
original 8080 expression carefully to determine its intent, and then hand
translate the expression to a valid MCS-86 expression that corresponds to the
original intent.

18 INSTRUCTION AS OPERAND CANNOT BE TRANSLATED

8080/8085 instructions are not permitted as operands in your source file.

19 REGISTER USED IN UNKNOWN CONTEXT

A register was used in an unknown context, such as:

REG EQU B

If this directive appears in an INCLUDE file which does not reference REG,
conversion of the INCLUDE file will result in a type ambiguity for B. That is,
CONV86 will not know at the time of the INCLUDE file's conversion whether
B maps into CH or CX. You should check to see whether you want B to map
into a byte register or a word register, and change the converter's mapping
accordingly.

20 OUTPUT LINE TOO LONG; TRUNCATED

An output line has exceeded 129 characters and has been truncated. You should
recode the line in 8086 accordingly.

21 LABEL ASSUMED TO BE NEAR

CONV86 has been unable to determine how this label is used; it is assumed to be
of type NEAR. Since CONV86 has no information on how to type this symbol,
you should check its usage and change its type accordingly.

22 NOMACROFILE CONTROL DELETED

No corresponding control exists for the 8086 assembler. No manual editing is
required for this caution.

23 MOD85 CONTROL DELETED

No corresponding control exists for the 8086 assembler. No manual editing is
required for this caution.

24 SOURCE LINE TOO LONG; IGNORED

The current source line exceeds 129 characters and has been mapped into a com
ment in both 8080/8085 and 8086 output files. You can either recode the source
line and reconvert the source file using CONV86, or you can insert 8086 code in
the OUTPUT file to accomplish the intent of the source line.

3-11

Editing Converter Output

3-12

~ CURRENT SEGMENT UNKNOWN; CANNOT GENERATE ENDS

An END or SEG directive in 8086 implies a preceding ENDS directive to close
the currently open segment. This segment is unknown. You should insert an
ENDS directive of the appropriate type.

U SYMBOLNAMETOOLONG

Symbol names in 8086 cannot exceed 31 characters.

28 CONDITIONAL ASSEMBLY GENERATED

CONV86 has assumed that it is possible that the operand of this PUSH or POP
instruction is the PSW. Conditional assembler directives have been generated
to take this possibility into account. If you know the operand is the PSW, you
can substitute the appropriate mapping from Appendix A for:

• POP PSW (Using EXACT Control)

• POP PSW (Using APPROX Control)

• PUSH PSW (Using EXACT Control)

• PUSH PSW (Using APPROX Control)

On the other hand, if you know the operand is definitely not the PSW, you can
substitute the appropriate mapping from Appendix A for:

• POP rw

• PUSH rw

(Using either EXACT or APPROX)

(Using either EXACT or APPROX)

If you cannot determine whether the operand is the PSW, you should desk
check or single-step your source program until you are able to make that deter
mination. Otherwise, the conditional assembly statements placed by CONV86
in your OUTPUT file will not assemble under version V2.0 of the MCS-86
Macro Assembler.

30 UNKNOWN INSTRUCTION ASSUMED TO BE A MACRO

The converter is unable to recognize this statement and has assumed that it is a
macro call. You should verify this assumption and recode if necessary.

31 GENERATED LABEL MIGHT NEED TO BE DECLARED LOCAL

The converter has generated a label within a macro definition. This label must
be made local if the macro is invoked more than once.

32 (NO)COND CONTROL DELETED

No corresponding control exists for the 8086 assembler. No manual editing is
required for this caution.

33 (NO)MACRODEBUG CONTROL DELETED

No corresponding control exists for the 8086 assembler. No manual editing is
required for this caution.

34 METACHARACTER OR PARENTHESIS FOUND IN IRPC STRING

A '0J0,' '(' or ')' character was left in an IRPC string but will not be correctly
interpreted by the 8086 assembler. This requires your attention.

CONV86

CONV86 Editing Converter Output

35 EXPRESSION ASSUMED TO BE A CONSTANT

CONV86 has not been able to determine what type of expression is in this
instruction. CONV86 has assumed that the expression is a numeric constant. If
this assumption is incorrect, you should examine the resulting 8086 statement
and recode the mapped expression to suit your intent. You may find it helpful to
insert additional labels.

36 SYMBOLIC EXPRESSION MAY BE CONTEXTUALLY INVALID FOR ASM86

A symbolic expression has been encountered in a context in which the 8086
assembler allows expressions containing only two type of operands:

a. Numeric constants, and

b. Macro symbols (preceded or followed by a '070') that evaluate to numeric
constants.

If the expression contains symbols which do not conform to b, above, they must
be replaced by their numeric values or redefined via the 070 SET macro.

3-13

APPENDIX A
INSTRUCTION MAPPING

Following are instruction mappings from SOSO/SOS5 to 8086 assembly language.
Operands are mapped according to Appendix B. Operand designations are as
follows:

ib = byte immediate
iw = word immediate
mb = byte memory
mw = word memory

mn = near memory
rb = byte register
rw = word register

Similarly, ib' refers to the mapping of ib, iw' refers to the mapping of iw, and so on.
Thus, if B = rb, then rb' = CR. But if B = rw, then rw' = CX.

Constructs of the form L_n are generated internally by CONVS6 for use as labels in
mappings of conditional CALLs, conditional RETurns; conditional JMPs.

8080/8085 8086 Remarks

AClib ADCAL,ib'

ADCrb ADC AL,rb'

ADD rb ADD AL,rb'

ADlib ADDAL,ib'

ANArb ANDAL,rb'

ANlrb ANDAL,ib'

CALLmn CALL mn'

CCmn JNBSHORTLn (L_n inserted as label for
CALL mn' instruction following CALL)

CMmn JNSSHORTLn (L_n inserted as label for
CALL mn' instruction following CALL)

CMA NOTAL

CMC CMC

CMPrb CMPAL,rb'

CNCmn JNAE SHORT Ln (L_n inserted as label for
CALLmn' instruction following CALL)

CNZmn JZSHORTLn (L_n inserted as label for
CALL mn' instruction following CALL)

CPmn JSSHORTLn (L_n inserted as label for
CALLmn' instruction following CALL)

CPEmn JNPSHORTLn (L_n inserted as label for
CALL mn' instruction following CALL)

CPlib CMPAL,ib'

CPOmn JP SHORT L_n (L_n inserted as label for
CALL mn' instruction following CALL)

CZmn JNZSHORTLn (L_n inserted as label for
CALLmn' instruction following CALL)

A-I

Instruction Mapping CONV86

8080/8085 8086 Remarks

DAA DAA

DADrw ADD BX,rw' (Using APPROX Control)

DADrw LAHF (Using EXACT Control)
ADD BX,rw'
RCRSI,1
SAHF
RCLSI,1

DCR rb DEC rb'

DCXrw DEC rw' (Using APPROX Control)

DCXrw LAHF (Using EXACT Control)
DEC rw'
SAHF

DI eLi

EI STI

HLT HLT

IN ib INAL, ib'

INR rb INCrb'

INXrw INCrw' (Using APPROX Control)

INXrw LAHF (Using EXACT Control)
INCrw'
SAHF

A-2

CONV86 Instruction Mapping

8080/8085 8086 Remarks

JCmn JBSHORTmn' (For forward short branch)

JCmn JBmn' (For backward short branch)

JCmn JAE SHORT L_n (Otherwise)
JMP mn'

JM mn JSSHORTmn' (For forward short branch)

JM mn JSmn' (For backward short branch)

JM mn JNS SHORT L_n (Otherwise)
JMP mn'

JMPmn JMP SHORT mn' (For forward short branch)

JMPmn JMP mn' (Otherwise)

JNCmn JAE SHORT mn' (For forward short branch)

JNCmn JAE mn' (For backward short branch)

JNCmn JNAE SHORT L_n (Otherwise)
JMP mn'

JNZmn JNZ SHORT mn' (For forward short branch)

JNZmn JNZ mn' (For backward short branch)

JNZmn JZSHORTLn (Otherwise)
JMP mn'

JPmn JNS SHORT mn' (For forward short branch)

JP mn JNS mn' (For backward short branch)

JPmn JS SHORT L_n (Otherwise)
JMP mn'

JPEmn JPSHORTmn' (For forward short branch)

JPE mn JP mn' (For backward short branch)

JPE mn JNP SHORT L_n (Otherwise)
JMP mn'

JPOmn JNP SHORT mn' (For forward short branch)

JPOmn JNP mn' (For backward short branch)

JPOmn JPSHORTL_n (Otherwise)
JMP mn'

JZmn JZSHORT mn' (For forward short branch)

JZmn JZmn' (For backward short branch)

JZ mn JNZ SHORT L_n (Otherwise)
JMP mn'

A-3

Instruction Mapping CONV86

8080/8085 8086 Remarks

LDAmb MOVAL,mb'

LDAXrw MOVSI,rw'
LODS DS:M[SI]

LHLDmw MOV8X,mw'

LXI rw,iw MOVrw',iw' (When 2nd operand immed. or near)

LXI rw,iw LEA rw',iw' (When 2nd operand is byte or word)

MOV rb1,rb2 MOV rb1',rb2'

MOV M, rb MOV M[8X], rb'

MVI rb,ib MOVrb',ib'

MVIM,ib MOV M[8X], ib'

NOP NOP XCHG AX,AX (1 byte, 3 clocks)

ORArb OR AL,rb'

ORlib ORAL,ib'

OUTib OUTib', AL

PCHL JMP8X

POPrw POP rw' (For EXACT or APPROX when rw is
definitely not PSW)

POP PSW POP AX (Using APPROX Control)
XCHG AL.AH

POPPSW POP AX (Using EXACT Control)
XCHGAL,AH
SAHF

POPrw %IF(%EOS (Using APPROX when rw
(rw' ,AX» THEN(could be PSW)

POP rw'
XCHGAL,AH
)ELSE(
POP rw'
)FI

POPrw %IF(%EOS (Using EXACT Control when rw
(rw' ,AX» THEN(could be PSW)

POP rw'
XCHG AL, AH
SAHF
)ELSE(
POP rw'
)FI

A-4

CONV86

8080/8085

PUSHrw

PUSH PSW

PUSH PSW

PUSHrw

PUSHrw

RAL

RAR

RC

RET

RIM

RLC

RM

RNC

RNZ

RP

RPE

RPO

RRC

RSTib

RZ

8086

PUSH rw'

LAHF
XCHGAL,AH
PUSH AX
XCHGAL,AH

XCHGAL,AH
PUSH AX
XCHGAL,AH

%IF(%EOS
(rw' ,AX» THEN(

XCHGAL,AH
PUSH rw'
XCHGAL,AH
)ELSE(
PUSH rw'
)FI

%IF(%EOS
(rw' ,AX» THEN(

LAHF
XCHG AL,AH
PUSH rw'
XCHGAL,AH
)ELSE(
PUSH rw'
)FI

RCLAL,1

RCR AL,1

JNBSHORTLn
RET

RET

error

ROLAL,1

JNSSHORTLn
RET

JNAE SHORT L_n
RET

JZ SHORT Ln
RET

JS SHORT Ln
RET

JNPSHORTLn
RET

JP SHORT Ln
RET

RORAL,1

INTib'

JNZSHORTLn
RET

Instruction Mapping

Remarks

(For EXACT or APPROX when rw is
definitely not PSW)

(Using EXACT Control)

(Using APPROX Control)

(Using APPROX Control when rw
could be PSW)

(Using EXACT Control when rw
could be PSW)

(L_n inserted as label for
instruction following RET)

(L_n inserted as label for
instruction following RET)

(L_n inserted as label for
instruction following RET)

(L_n inserted as label for
instruction following RET)

(L_n inserted as label for
instruction following RET)

(L_n inserted as label for
instruction following RET)

(L_n inserted as label for
instruction following RET)

(L_n inserted as label for
instruction following RET)

A-5

Instruction Mapping CONV86

8080/8085 8086 Remarks

SBB rb SBB AL,rb'

SBlib SBB AL,ib'

SHLDmw MOVmw',BX

SIM * * * error* * *

SPHL MOVSP,BX

STAmb MOVmb',AL

STAXrw MOVDI,rw'
MOV DS:[DI],AL

STC STC

SUB rb SUB AL,rb'

SUlib SUB AL,ib'

XCHG XCHG BX,DX

XRArb XOR AL,rb'

XRlib XORAL,ib'

XTHL POPSI
XCHG BX,SI
PUSH SI

unknown expr unknown' expr'

A-6

APPENDIX B
CONVERSION OF EXPRESSIONS

IN CONTEXT

The following describes how SOSO/SOS5 expressions are converted to SOS6 expres
sions according to the context in which an operand or expression occurs.
The context is simply what CONVS6 infers from the use of the operand in the
instruction:

ib = byte immediate
iw = word immediate
mb = byte memory
mw = word memory
mn = near memory
rb = byte register
rw = word register

M is defined to be a byte located at absolute location O. In contexts 3 and 5 below,
forward-referenced memory items are treated as "unknown."

1. Context = ib

• Operand = ib: expr -+ expr'

• Operand = iw: expr -+ LOW(expr')
• Operand = mn, mw, mb, or unknown: I 2

If REL control, then
expr - LOW DGROUP:(expr')

If ABS control, then
expr - LOW(expr')

2. Context = iw

• Operand = ib or iw: expr - expr'

• Operand = mb, mw, mn, or unknown2
:

If REL control, then
expr - OFFSET DGROUP:(expr')

If ABS control, then
expr - OFFSET(expr')

3. Context = mb

• Operand = mb: expr -+ expr'

• Operand = mn or mw or unknown: expr -+ BYTE PTR(expr')

• Operand = ib or iw: expr - M[expr']

4. Context = mn

• Operand = mn: expr -+ expr'

• Operand = mb or mw or unknown: expr -+ NEAR PTR(expr')

• Operand = ib or iw: expr - NEAR PTR M[expr']

5. Context = mw

• Operand = mw: expr -+ expr'

• Operand = mb or mn or unknown: expr -+ WORD PTR(expr')

• Operand = ib or iw: expr - WORD PTR M[expr']

1. mn, mw, and mb are illegal in SOSO in this context, but give an implicit LOW.

2. unknown generates Caution Message 17.

B-1

Conversion of Expressions in Context CONV86

6. Context = rb

• Operand = rb:

• A-AL

• B-CH

• C-CL

• D-DH

• E-DL

• H-BH

• L-BL

• Operand = mb:M - M[BX]

7. Context = rw

• Operand = rw:

• B-CX

• D-DX

• H-BX

• SP-SP

• PSW-AX

B-2

APPENDIX C
ASSEMBLER DIRECTIVES MAPPING

This appendix shows how 8080/8085 assembler directives are converted by CONV86
into 8086 assembler directives. Expression mapping is described in Appendix B.
Context symbols (for instance, "expr", "mn", and so on) used as directive
operands are mapped according to Appendix B.

In certain cases (EQU, IRP, macro call, and SET), it is possible to determine that an
assignment is being made to a byte or word register. In such cases, the appropriate
rb or rw expression conversion is performed. The STKLN expression is converted in
the prologue (see Chapter 1, "Functional Mapping").

Table C-l. Assembler Directives Mapping

8080/8085 8086 NOTES

ASEG prev-seg ENDS
A BS_O SEGMENT BYTE AT 0

CSEG prev-seg ENDS
CODE SEGMENT WORD PUBLIC 'CODE'

DB expr-list DB expr-list'

OS expr DB expr' DUP (?)

DSEG prev-seg ENDS
DATA SEGMENT WORD PUBLIC 'DATA'

DWexpr-list DWexpr-list'

END [mn] prev-seg ENDS
END [mn']

name EQU expr name' EQU expr'

EXTRN name-list EXTRN name:usage-list'

NAME name NAME name'

ORGmn ORG mn'

PUBLIC name-list PUBLIC name-list'

STKLN expr ***deleted*** If the REL control (a default) is
used, STKLN converts to informa-
tion in the prologue. Refer to
Chapter 1, "Functional Mapping."

aSETb % SET (a',b') If the symbol being defined is
never set to a non-constant.

1---- ------ -------
PURGEa' If the symbol being defined is ever

a' EQU b' set to a non-constant and the SET
is not self-relative.

1---- - ----- -------
T_a' EQU b' If the symbol being defined is ever

PURGEa' set to a non-constant and the set
a' EQU T_a' is self-relative, e.g., X SET X+5.

PURGET_a'

IFa %IF (a') THEN (

ELSE)ELSE(

ENDIF)FI

C-I

Assembler Directives Mapping CONV86

Table C-l. Assembler Directives Mapping (Cont'd.)

8080/8085 8086 NOTES

a MACRO b, ... %*DEFINE (a'(b' , ...)) All local labels for the macro (c' ...)
LOCALc' ... (are moved to the local list in the

macro definition, with blanks
replaci ng commas. LOCAL
statements disappear. The word
LOCAL is not produced if there are
no local labels.

The parentheses around b' , ... are
omitted when the parameter list is
null.

LOCALe, ... none

ENDM) If this directive closes a macro.
~- -- - - --- --- ----

)) If this directive closes a REPT, IRP
or IRPC definition.

mcall b, ... %mcall (b', ...) The parentheses are omitted
when the parameter list is null.

IRPa,b %IRP(a' ,b')c' ... (%(All local labels for the macro (c' ...)
are moved to the local list in the
macro definition, with blanks
replacing commas. LOCAL
statements disappear.

IRPCa,b %IRPC(a' ,b')c' ... (%(All local labels for the macro (c' ...)
are moved to the local list in the
macro definition, with blanks
replacing commas. LOCAL
statements disappear.

REPTa %REPT(a')c' ... (%(All local labels for the macro (c' ...)
are moved to the local list in the
macro definition, with blanks
replacing commas. LOCAL
statements disappear.

EXITM %EXIT

C-2

APPENDIX D
RESERVED NAMES

A name appearing in an SOSO/SOS5 expression may have a special SOS6 interpreta-
tion (for instance, AL or TEST), or it may be reserved for a segment or group name
(for instance, CODE). Except for STACK, which is converted to STACK_BASE,
each such name is automatically converted by CONV86 by appending an underscore
to it (for instance, AL_ or TEST_). The 80SO reserved word MEMORY is treated
specially.

The following ASMS6 reserved names are modified by CONVS6:

Table D-l. Reserved Names

AAA CX IDIV JNO NEAR ROL
AAD DAS IMUL JNP NEG SAHF
AAM DO INC JNS NES SAL
AAS DEC INCHAR JO NIL SAR
ABS DEFINE INT JS NOSEGFIX SCAS
AH DH INTO LABEL NOTHING SEG
AL DIV IRET LAHF OFFSET SEGFIX
ASSUME DL JA LOS PARA SEGMENT
AT DUP JAE LEA POPF SHORT
AX DWORD JB LEN PREFX SI
BH OX JBE LENGTH PROC SIZE
BL ELSE JCXZ LES PROCLEN SS
BP ELSEIF JE LOCK PIR STD
BX ENDIF JG LODS PURGE STI
BYTE ENDM JGE LOOP PUSHF STOS
CBW ENDP JL LOOPE RCL STRUC
CH ENDS JLE LOOPNE RCR SUBSTR
CL EQS JNA LOOPNZ RECORD TEST
CLC ES JNAE LOOPZ RELB THIS
CLD ESC JNR LTS RELW TYPE
CLI EVAL JNBE MASK REP WAIT
CMPS EXIT JNE MATCH REPE WHILE
CODEMARCO FAR JNG METACHAR REPEAT WIDTH
COMMON GES JNGE MODRM REPNE WORD
CS GROUP JNL MOVS REPNZ XLAT
CWO GTS JNLE MUL REPZ

The names CGROUP, CODE, CONST, DATA, and DGROUP are reserved by
CONVS6 to set up a PL/M-S6 environment.

The assembler-reserved symbols? and ??SEG are not permitted as user mnemonics.

D-l

APPENDIX E
MACRO CONSTRUCT CONVERSION

All macro definitions and calls will be translated to their 8086 macro processing
language equivalents. However, macro related constructs require special conversion.

The following 8080/8085 macro constructs are converted to their 8086 equivalent as
shown:

8080
CONSTRUCT

..
"

!

NUL operand

<Jist>

(

)

%expression

symbol

symbol

%

&

Table E-l. Macro Construct Conversion

8086
EQUIVALENT

0/0'

%1

% EQS(operand' , %0)

%(Jist')

%1(

%1)

expression'

% (symbol')

%symbol'

%1%

%

NOTES

Within a macro definition body.

When quoted or within a list or IRPC string.

Within any expression.

Within any macro argument field, but '< >' is
stripped when surrounding an IRPC string.

Within < > or " in macro call parameter,
macro definition, IF expression or body, or
SET body.

Within < > or ' , in macro call parameter,
macro definition, IF expression or body, or
SET body.

Within macro argument field.

When symbol is a macro parameter and is
being passed to another macro in an argu
ment field that does not use %.

When symbol is a parameter or local symbol
in a macro definition, a macro itself, or
defined with a SET directive.

Within quotes when not causing
concatenation.

Concatenation translation.

E-l

APPENDIX F
SAMPLE CONVERSION

AND LISTINGS

This appendix consists of:

• Figure F -1. 8080 Sort Routine Source File

• Figure F-2. CONV86 PRINT File of Conversion of 8080 Sort Routine

• Figure F-3. MCS-86 Macro Assembler Listing of Conversion of 8080 Sort
Routine

• Figure F-4. MCS-86 Macro Assembler Listing of Originally Coded 8086 Sort
Routine

Please note that the CONV86 OUTPUT file was edited before submitting it to
ASM86 for assembly. The OUTPUT file was edited as follows:

1. To retrieve PL/M-86 stack parameters, code (corresponding to lines 44-47 in
Figure F-3) was inserted as described in Chapter 3.

2. To correct incomplete register mapping due to mnemonics appearing in an
IRPC string, IRPC calls have been deleted at lines 69 and 85 in Figure F-2, and
the code has been expanded by hand to that at lines 91-94 and 132-133 in Figure
F-3. This edit is in response to the converter generated caution.

3. For space/time considerations, only the necessary LAHF /SAHF instructions
were retained from the OUTPUT file. Since the file was converted using the
(default) control EXACT, flag-preserving code for all occurrences of DAD,
DCX, INX, and PUSH/POP PSW was generated. You can determine which
flag-preserving code has been retained by comparing Figures F-2 and F-3

F-I

Sample Conversion & Listings

• MACROFr~g!:Fl~) NOOBJ~CT
;1 •••••••••••••••••• 1 ••••••••••••• , •••••••••••••••• ,.,III.

A P~/M callaole subroutine:
CA~~ SORT1.Al •• N)

Sorts the ar~ay Al. containing N wo~ds.
At entry BC points to the ar~ay Al. and
DE points to N. Two pointe!'s 1;0 ele;nents of Al ape
incremented in two loops. The outer loop steps Og
through the elements of Al. fhe inner loop steps
H~ through the elemenl;s of Al that follow D~. At
each step of the inner lOOD. the ite~s ~t H~ and DE
a~e eXChanged. if required. so that at the end of
the inne~ loop, the ite;n at D8 is lar!e~ tha all
the items that follow it. The ite~ at DE is then in
its proper position. so Di is inare~ented to

; compLete one iteration of the outs!' Loop.
, •••• , ••••••••••••••••• , ••• , ••• , ••••••••• JI ••••••• JI •• "'"

D~ta area follows
DSEJ

fiST: DS

CSEG
PUB:..rC SORT

SWAP MACRO
Tnis m~cro swaps two bytes pointed to by H~ and DE.

; fest
SOflT:

3NDM
adj,'ess of the

XCH·:;
~OV

INX
t-10i/
XCHG
DCX
DAD
o)AD
SH'.O

~DAX D
MOv C.M
MOV M.A
XCHG
i'101/
XCHG

last element of Al.

Yl.C

f is T = ; 1/ - 1) • 2 .. • A 1

".M
[j

9.M

EST

- 1)
J 2

... Al
r;:ST

Figure F -1 A. 8080 Sort Routine Source File

F-2

CONV86

CONV86

OUTER ~OOP~ DO DE
MOV'

ourTST:·
i~OV

:'DA
SUB
!. DA
saB
RC

INNER ~OOP~ DO H~

HOiT
140,{
RUT

ENDM

.A1 TO rEST BY 2.
E.G

D.B
HST

TEST .. 1
D

DE .. 2 ro rEST B~

:'.I!:
H.D

2
INX 3

; IF H~ > rEST THEN Joro o~rI~C
INTST~ :'OA TEST

SUB
~DA rEST .. 1
saa H
JC OUrINC

IF A1IH:') < A1IoE) THEN GOTO ININC

ac CONTAINS .A1

IP D3 > TEST THEN RgTURN

As a side effe~t. H~ and DE are in~re~ented by 1
to point to the nigh bytes of their array ele~ents.

:"DAX D
SUB M
IRt>G Z.DH

ENDM
:"DAX

I,H

SaB M
JNC INI~G

Figure F-IB. 8080 Sort Routine Source File

Sample Conversion & Listings

F-3

Sample Conversion & Listings

~xchange A:OE) with A:H~). ~eav8 H~ and D~
painting to HIGH bYGes.

SWAP
lRP Z.<O.H>

DGX
ENDt1

~xchange low bytes

SWAP
Point H~ and DE co high byG8s

IilPG Z,DH
nIX Z

ENDI"1

Put: Z) D and H ir. chei~ oLa:!e

; DE an Hf ...
; set OS
lNING:

point to HIGH bytes. Fo~ the next itenation.
?('evious DE:, lE, : 2 .. r('e'lious H".

DGX D
INK Ii
JMP INTST

; End of OUGe(' loop. Set D~ = D~ .. 2
OUTING: RE:PT 2

IPIX D
"NDM
J~P J~Tr3r

END

Figure F -1 C. 8080 Sort Routine Source File

F-4

CONV86

CONV86

ASM30 TO ASM35 CONVerlTER

ISIS-II ASM30 TO ASM35 CONVERSION O~ ~I~E ~~1:S0RT80
ASMBS P~ACED IN :~1:S0RT80.A86
CONVERTER V2.0 I.VOKED BY~

~Fl:CONV85 ~~1;SORT30 NOSOURCE~IST

3086 PROGRAM

$ WORKFI~ESI!Fl:.!Fl:) NOOBJECT
CGROUP GROUP ABS_O.CODE.CONST,DATA.STACK.MEMORY
DGROUP GROUP ABS_J.CODE,CONST.DATA.STACK.MEMORY

ASSUME DS:DGROUP,CS:CGROUP.SS,DGROUP
CONST SEGMENT WORD PUBLIC 'CaNST'
CONST ENDS
STACK SEGMENT WORD STACK 'STACK"
STACK_BASE ~ABE~ BYTE
STACK ENDS
MEMORY SEGMENT WORD MEMORY 'MEMORY'
MEMORY_ ~ABE4 BYTE
MEMORY ENDS
ABS~O SEGMENT BYTE AT °
M ~ABEl.. BYTE
J·DEFINE I REPT I N) ~OCA~S I BODY» !.OCA'. MACRO I

~·DEFINE IMACRO) ~OCA!. ~!,OCA~S r~BODY)
JREPEAT !%N) I~MACRO))

l·DEFINE IIRP IPARM.P!.IST) '.OCA!.S IBODY» !,OCA~ MACRO ~IST I
%.DEFINE {MACRO) ~OCA~ Jl..OCA~S I%BODY)
J·DEFINE 1[.IST) I~P'.IST)
~IF .%l..ENIJ*!.IST) EQ 0) THEN

%DE~INE I%PARM) ;£0)
~MACRO)

E'. SE I

FI)

%WHI:'E !%'.ENI%·~IST) WE 0) 1
%MATCHI%PARM,l.IST) 1%I:'IST)
~MACRO))

J·DEFINE 1IRPC lPARM,TEXT) ~OCA~S IBODY» ~OCAl.. MACRO l.IST
%IDEFINE IMACRO) :'OCA'. J!,OCA~S I~BODY)
~·DEFINE I!.IST) I%TEXT)
~IF !%l.ENl~·~IST) EQ 0) THEN

%DEFINE I%PARM) I~O)
:hIACRO)

E!.SE 1

FI)

%WHI1.E U!.ENU·!.IST) NE 0) I
'DEFINE I~PARM) !~.SUBSTRr%.!.IST.l.l»
SDEFINE I!.IST) IJ·SUBSTR!%·~IST.2,9999»
,MACRO))

2 ••••••••••••••••••• , ••••••••••••••• , •••••••••••••••••••••
3 A P:./M callable subroutine:
4 CA!.l. SORTI.Al,.N)
5 Sorts the array Al, containing N words.
6 At entry BC points to the array Al. and
7 DE points to N. Two pointers to elements of Al are
8 incremented in two loops. The outer loop steps DE
9 through the elements of Al. The inner loop steps

Sample Conversion & Listings

Figure F -2A. CONV86 PRINT File Conversion of 8080 Sort Routine

F-5

Sample Conversion & Listings

ASM30 TO ASM86 CONVERTER

F-6

10
11
12
13
14
15
16
17
18
19
19
20
21
22
22
23
24
25
26
26
27
28
29
30
31
32
33
34
35
36
36
36
37
38
39
39
39
40
40
40
40
40
41
41
41
41
41
42
43
44
45
46
47
48
49
50
50

H~ through the elements of Al that follow DE. At
each step of the inner loop. the items at H~ and DE
are exchanged, if requi~ed. so that at the end of
the inner loop, the item at DE is larger tha all
the items that follow it. The item at DE is then in
its proper position. so DE is incremented to

; complete one iteration of ~he outer loop.
; ••••••••••••••••••••••••••• , ••••••••••• , ••••• 1 ••••••••••••

; Data area follows
ABS_O ENDS
DATA SEGMENT WORD POB~IC "DATA"
TEST_ DB 2 DUP I?)

Begin code area
ENDS DATA

CODE SEGMENT WORD PUB~IC 'CODE"
POB!'IC SORT

S'DEFINE {SWAP)
S' This macro swaps two bytes pointed to by H~ and DE.

MOV SI,OX
i.. ODS OS'·M~ SI]
MOV C!., M~ BX]
MOV MIBX].A!.
XCHG BX,OX
MOV MiBX].CL
XCHG eX,DX
)

• Test = address of the last element of Al.
SORT: XCBG BX.OX ; TEST iN - 1) • 2 ... Al

MOV O:',M:BX]
~AH~

UC BX
SAH~

MOV OH.MIBX]
XCHG BX,OX !~
"AHF
DEC BX
SAH~ - 1)
'.AHF
ADD
RCR
SAHF
RC;'
:'AHF
ADD
RCR
SAHF
RC!.
MOV

BX,BX
SI,l

SI,l

BX,CX
SI,l

SI.l
WORD PrRt TEST_) ,BX

• 2

... OOrER !.OOP:,
MOV

DO DE = .Al ro rEST Bf 2;
Dr. ,C'. BC CONTAINS .Al

MOV DH,CH

+ .Al
TEST

OOTTST:- MOV
SOB
MOV
SBB
JNB
RET

A'., TEST_ IF DE > TEST THEN RETURN
AL,DL.
A!.. TEST_to 1
A!. ,DH
SHORT '._1

Figure F-2B. CONV86 PRINT File Conversion of 8080 Sort Routine

CONV86

CONV86

ASM80 TO ASM86 CONVERTER

50
51
52
53
54
55
55
55
56
57
58
59
60
61
62
63
64
65
66
67
67
68
69

!.._1:
; INNER !.OOP:

MOV
MOV
UEH
!..AHF
INC
SAHF
»

DO H!.. = UE+2 TO TEST BY
B!..D!.
BH,DH
12) !U

BX

; IF H~ > TEST THEN GOTO OUT INC
INTST: MOV A!. ,TEST_

SUB A!.., B!.
MOV A~.TEST_+1

SBB Ai.., BH
JB SHORT OUTINC

IF A1IHL) < A11DE) THEN GOTO ININC

; HI.. DE +

As a side effect, H~ and DE are inc~emented by 1
to point to the nigh bytes of thei~ array elements.

MOV SI,DX
!.oODS OS: M~-SI]
SUB AI..MIBX]
SIRPC IZ,DH) :JI

... CAUTION
70

002 f.f 8080 REGISTER MNEMONIC APPEARING IN IRPC STRING
!.AHF
INC
SAHF
»

70
70
71
72
72
'3
711
75
76
77
78
79
79
79
80
81
82
83
84
85

MOV SI,DX
:'ODS OS: M:6SI]
S.BB A:'. M~ BX]
JAE SHORT ININC

Exchange ArDE) with A!H~).
pointing to HIGH bytes.

SSWAP
J!RP
!.AHF
DEC
SAHF
»

IZ.J~DX,BX»

Exchange low bytes

SSWAP

Leave H!. and DE

III

S· Put IZ) D and H in their place

Point H!.. and DE to high bytes
SIRPC !Z.DH) !J!

••• CAUTION
86

002 ff. 8080 REGISTER MNEMONIC APPEARING IN IRPC STRING
LAHF
INC
SAHF
»

86
86
81
88
89
90
90
90
91
91

; DE an H!.. point to
; set DE = Previous
IN INC: ~AHF

DEC
SAHF
LAHF
INC

Ox

BX

HIGH bytes. For the next iteration.
DE, H:' = 2 + Previous HL.

Sample Conversion & Listings

Figure F-2C. CONV86 PRINT File Conversion of 8080 Sort Routine

F-7

Sample Conversion & Listings CONV86

ASM80 TO ASM86 CONVgRTER

91 SAHF
92 JMP INTST
93 End of out.er' loop. Set DE DE +

911 OUTINC: %REPT .2) : J:
95 !.AHF
95 INC DX
95 SAHF
96 »
97 JMP OUTTST
9B CODE ENDS
98 END

2 CAUTIONIS)

END OF ASM80 TO ASM86 CONVERSION

Figure F-2D. CONV86 PRINT File Conversion of 8080 Sort Routine

F-8

CONV86 Sample Conversion & Listings

Mes-as MACRO ASSEMB~ER SORT3J

ISIS-II Mcs-a6 MACRO A3SEMB~ER V2.0 ASSEMB~Y O~ MODO~S so~r30
NO OBJECT MODU~E REQUESTED
ASSEMB~ER INVOKED BY: :F3:ASM35 ~rl:S0RT30.A35

~OC OBJ

0000

0000

0000

0000 12
11
)

0000
0000 5B
0001 59
0002 5A

:aINE

1
2
3
q
5
5
7
8
9

10
11
12
13
1 q
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

38
39
qO
41
42
43
44
45
46
41

+1
+1

SOURCE

$ WORKFILESI:F1:.:F1:) NOOBJECT
CGROUP GROUP ABS_O.CODE,CONST,DATA.STACK.MEMORY
DGROUP GROUP ABS_O.CODE.CONST,DATA.STACK.MEMORY

ASSUME DS~DGROUP.CS:CGROUP.SS~DGROUP

CONST SEGMENT WORD PUB:'IC 'CONST'
CONST ENDS
STACK SEGMENT WORD STACK 'STACK'
STACK_BASE !.ABE~ BYTE
STACK gNDS
MEMORY SEGMENT WORD MEMORY ~MEMORY'
MEMORY_ !.ABE!. BYTE
MEMORY gNDS
ABS_O SEGMENT BYTE AT a
M :'ABE:' BYTE

; •• * ••••••••••••
A P:./M callable sub~outine~

CAL!. SORTLA1 •• N)
Sorts the array Al, containing N wo~ds.
At entry BC points to the array Al. and
DE points to N. Two pointers to elements of Al are
incremented in two loops. The outer loop steps DE
through the elements of Al. The inner loop steps
HI. through the elements of Al that follow DE. At
each step of the inne~ loop. the items at H:' and DE
are exchanged. if requi~ed. so that at the end of

~ the inne~ loop, che item at DE is larger tha all
the items that follow it. The item at DE is then in
its proper pOSition. so DE is inc~emented to

; complete one iteration of the outer loop.
; •••••• f •••

• Data a~ea follOWS
ABS_O ENDS
DATA SEGMENT WORD PUB:'IC 'DATA'
TEST_ DB 2 DUP I?)

Begin code a~ea

DATA ENDS
CODg SgGMENT WORD POB:'IC 'CODE'

PUBLIC SORT

; Test = address of the last element of Al.
SORT:

POP BX
POP CX
POP OX

~ •••• CODE INSgRTED TO
•••• RgTRIgVg PL/M-86
•••• STACK PARAMgTERS

Figure F-3A. MCS-86™ Macro Assembler Listing
of Conversion of 8080 Sort Routine

F-9

Sample Conversion & Listings

M S-86 MACRO ASSEMB~ER

"OC OBJ

0003 53
000~ S1Dfl
0006 SA970000
OOOA 43
OOOB 8AB70000
OOOF 87DA
0011 4B
0012 03DB
0014 0309
0016 891EOOOO

001A SADl
001C 8AF5
001E Aooooa
0021 2AC2
0023 A00100
0026 lAC6
0028 7301
002A C3
002B

002B 8ADfl
0020 8AFE

002F 43

0030 43

0031 AOOOOO
0034 2AC3
0036 A00100
0039 lAC7
003B 1242

0030 8BF2
003F AC
0040 2A870000
0044 9F
0045 42
0046 43
0047 9E
0048 SBF2
004A AC
004B lA870000
004F 732A

F-IO

SORT80

~UE

~8
49
50
51
52
53
54
55
56
51
58
59
60
61
62
63
54
65
66
57
68
69
70
71
72
73
74
15
76
77
78
73
80
81
82
83
84
85
86
81
88
89
90
91
92
93
94
95
96
91
98
99

100
101

SOURCE

PUSH BX ; •••• :'CHAPTER 3)
XCHG BX.OX TEST = IN - 1) • 2 .. .Al
MOV Dr... M:BX]
INC BX
MOV DH. M:·BX]
XCHG BX.DX ! N
DEC BX - 1)
ADD BX.BX • 2
ADD BX.CX + • fll
1'10'1 WORD prRlrEST_),BX TEST

OUTER 1.00P: DO DE = .A 1 TO TEST BY 2;
MOV DE., cr. BC CONTAINS • A 1
1'10'1 DH.CH

OUTTST: MOV A:". TEST_ IF DE > TEST THEN RETURN
SUB A:". D~
MOV fl:". TEST_+1
SSB A:".DH
JNB SHORT '.._1
RET

!.._1:
; INNER '..OOP:t DO H!.. = OE+2 ro rEST BY

1'10'1 B!...D!.
1'10'1 BH.DH

.. 1

.. 2

.. 3

.. 3 INC BX

.. 3

.. 3 INC BX

.. 3
: H~ DE: +

IF H" > rEST THEN GOTO OUT INC
INTST,. MOV A!... TEST_

SUB A'... B:'
1'10'1 A'... TEST_+1
SBB A'...BH
JB SHORT OUTINC

IF A 11 H!.) < flJI D!n THEN Goro ININC
As a side effect, H:' and DE are inc:"emented by 1
to point to the nigh bytes of their aC':"ay eLements.

MOV SI.DX
'..ODS DS'M:~SI]
SUB A'... Hi BX]
!.AHF •••• The IRPC invocation reguires manual
INC OX •••• The !.AHF and SAHF exact mapping
INC BX
SAHF
1'10'1 SI.DX
!.ODS DS~'H:'Sn
SBB A!... 1'1: BX]
JAE SHORT ININe

Exchange A:DE) with A! H!.). !..eave H!. and DE
pointing to HIGH bytes.

.. 1

Figure F-3B. MCS-86™ Macro Assembler Listing
of Conversion of 8080 Sort Routine

is
editing

regui:-ed

CONV86

CONV86

MCS-86 MACRO ASSEMB~ER

'.OC OBJ

0051 8BF2
0053 AC
00511 8A8FOOOO
0058 88870000
005C 87DA
005E 888FOOOO
0062 87DA

0064 4A

0065 liB

0066 8BF2
0068 AC
0069 8A8FOOOO
0060 88870000
0071 87DA
0073 888FOOOO
0077 870A

0079 112
I IRPC caL L removed

007A 113
• .. Expanded by hand

007S
007B 4A
007C 43
0070 EBB2

007F

007F 112

0080 112

0081 EB9B

ASSEMB!.Y COMP!.ETE. HO

Sample Conversion & Listings

SORT80

:.INE SOURCE

102 +1 MOlT SI.DX
103 +1 '.005 DS:-M:·sIl
1011 +1 MOlT cr.. M:"BX)
105 +1 MOlT M:-BX). Ai.
106 +1 XCHG BX.OX
107 +1 MOlT M:~BX). Cl.
108 +1 XCHG BX.DX
109 +1
110 +1
111 +2
112 +2
113 +2
114 +4
115 +4
116 +11
11 7 +4 DEC OX
118 +4
119 +4
120 +4 DEC BX
121 Exchange low byt:.es
122 +1
123 +1 MOlT SI.DX
12li +1 '.005 OS: M: sIl
125 +1 MOlT C'..M:BX)
126 +1 MOlT M:BX).A!.
127 +1 XCHG BX.DX
128 +1 MOlT M~QBX). Cl-
129 +1 XCHG BX.OX
130 +1
131 Point H:' and DE to high byt:.es
132 INC OX

and
133 INC BX

134 • DE an H!. point to HIGH bytes. Fo!' t:.he next:. l.tet'at:.ion.
135 set:. DE = Pt'evious DE. H!. = 2 + P!'evious H!. •
136 ININC:
137 DEC OX
138 INC BX
139 JMP INTST
140 End of Qut:.et' Loop. Set DE DE +
141 +1 OUrINC:
142 +2
143 +3
144 +3 INC OX
145 +3
1116 +3 INC OX
147 +3
148 JMP OUTTST
149 CODE ENDS
150 END

ERRORS FOUHD

Figure F-3C. MCS-86™ Macro Assembler Listing
of Conversion of 8080 Sort Routine

F-l1

Sample Conversion & Listings

M~S-86 MACRO ASSEMB~~a SORT36

ISIS-II MCS-S6 MACRO ASSEMa~ER V2.0 ASS~Ma~y O~ MODU~E SORrS6
OBJECT MODU~E ?~ACED IN ~fl:S0RTg5.0BJ
ASSEMB~ER INVOKED BY: :F3:ASM86 :Fl:S0RT35

~OC OBJ

0000
0006~']
0004I]

0000 55
0001 8BEC
0003 8B7606

0006 8B5EOII
0009 8BOF
oooa 03C9
OOOD 03CE
OOOF
OOOF 3BF1
0011 731B

0013 8D7C02
0016
0016 3BF9
0018 730F
OOH 8B04
001C 38"05
0018 7304
0020 8705
0022 8904
0024
0024 83C702
0027 EBED
0029

F-12

l.INE

1
2
3
II
5
5
7
8
9

10
11
12
13
14
15
16
17
1 B
19
20
21
22
23
211
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
112
113
114
45
116
47
48
49

SOURCE

; .. .
A Pl./M callable subroutine:

CA~l. SORTI.A1 •• N)
Sorts the array A1. containing N words.
At entry the address of N. and the address of A1
are on the stack. Two_ pointers to elements of A1
are kept in the SI and 01 registers. These pOinters
are incremented in two loops. The outer loop steps
SI through the elements of A1. The inner loop steps
01 through the elements of A1 that follow SI. At each

~ step of the inner loop. the item at SI is larger than
all the items that follow it. The item at SI is then in
its proper position, so SI is incremented to

; complete one iteration of the outer loop.
; •• 11 ••••••••••••

CGROUP GROUP CODE
; No OS ASSUME is needed, since this
; doesn't reference a DATA segment.

ASSUME ~S~CGROUP

routine

CODe: SEGMENT PUB:' IC • CODE'
PUBl.IC SORT

SORT PROC NEAR
ADDR_A1 EQU WORD PTR ~BP+6] fir st parameter

second parameter ADDR_N EQU WORD PTR :BP+4]
PUSH BP use BP to accesss parameters
MOV BP.SP
MOV SI~ADDR_A1

; Outer loop~ DO SI • A 1 BY WHI!.E SI < CX
MOV BX.ADDR_N
MOV CX.)BX] CX
ADD CX.CX

• 2 ADD CX.SI + • A 1
OUTTST:

CMP SI.CX ; IF SI >= CX THEN RETURN
JAE EXIT

~ Inner loop: DO 01 = SI+2 WHILE Dr < CX

INTST:

[NINC:

OUTINC:

~EA DI.~SI+2] ;01 = SI + 2

CMP
JAE
MOV
CMP
JNB
XCHG
MOV

OI.CX
OUTINC
AX. :··sI]
AX.:>DI]
ININC
AX. :'0 I]
iSI].AX

ADD 01.2
JMP INTST

; r F 01 >= CX
; THEN exit inner loop
;IF A1)SI]

< AlIDI]

THEN EXCHANGE A1IoI]
WITH A1~SI]

Figure F-4A. MCS-86™ Macro Assembler Listing
of Originally Coded 8086 Sort Routine

CONV86

CONV86 Sample Conversion & Listings

M s-86 MACRO ASSEMB~ER SOHT86

:'OC OBJ ~INE SOURCE

0029 33C702 50 ADD DI.2
002C EBE1 51 JMP OUITST
002E 52 EXIT.:"
002E 50 53 POP BP
002F C20~OO 5~ RET ~

55 SORT ENOP
56 CODE ENDS
57 END

ASSEMB:' Y COMP:' ETE. NO ERRORS FOUND

Figure F-4B. MCS-86™ Macro Assembler Listing
of Originally Coded 8086 Sort Routine

F-13

APPENDIX G
RELOCATION AND LINKAGE

ERRORS AND WARNINGS

Because of the way CONV86 sets up multiple segments beginning at absolute
location 0 (as described in Chapter 1 under "Functional Mapping"), MCS-86
linkage and relocation tools will issue warnings/errors as shown in Table 0-1. You
can safely ignore these warnings/errors when they specifically apply to intentional
segment overlap.

Table G-I. MCS-8~TM Relocation and Linkage Warnings/Errors
for Segrttent Overlap

R &L Tool Message 10 Message Text

WARNING14 GROUP ENLARGED
FILE: filename
GROUP: groupname

MCS-86 MODULE: modname

LINKER WARNING 28 POSSIBLE OVERLAP
FILE: filename
MODULE: modname
SEGMENT: ABS_O
CLASS:

G-I

ABS control (CONV86), 1-6, 2-3
absolute addressing, 3-2
APPROX control (CONV86), 1-11,2-2

caution messages, 1-13, 3-7
comments, mapping of, 1-10
continuation lines,

in CONV86 command, 2-5
in PRINT file, 3-1

controls (ASM80) mapping, C-l
controls (CONV86), 2-1
conversions, sample, 1-3,3-1, F-5
cross-development (8080/8085-

to-8086), 1-2

DATE control (CONV86), 2-2
directives mapping, C-l
displaced reference, 3-2, 3-3, 3-10

EXACT control (CONV86), 1-12,2-2
expressions, conversion of, B-1

files, CONV86, 1-2, 1-13
files, cross-development, 1-2
flags, mapping of, 1-9
flag semantics, 8080-8086 differences, 1-12
functional equivalence, 1-11
functional mapping, 1-6

INCLUDED control (CONV86), 2-3
instruction mapping, A-I
instruction queue (8086), 1-11
interrupts, 3-3

label insertion by CONV86, 3-2, A-I
label insertion by user, 3-3

macro call, 1-3
macro conversion, 1-3, E-l
macro definition, 1-3
MACROFILE control (ASM80), 1-10
manual editing, 1-3, 1-13,3-1, F-l
MOD85 control (ASM80), 1-10

INDEX

NOMACROFILE control (ASM80), 1-10
NOOUTPUT control (CONV86), 2-2
NOPAGING control (CONV86), 2-2
NOPRINT control (CONV86), 2-2
NOSOURCELIST control

(CONV86), 1-1,2-3
NOTINCLUDED control (CONV86), 2-3

operand mapping, B-1
OUTPUT control (CONV86), 2-2
overriding controls (CONV86), 2-5
overriding symbol types, 1-10,3-9,

3-10, 3-11

P AGELENGTH control (CONV86), 2-2
P AGEWIDTH control (CONV86), 2-2
pipeline (8086), 1-11
PL/M linkage conventions (8080 &

8086),3-6
PL/M parameter passing (8080 &

8086),3-6
PRINT control (CONV86), 2-2
PRINT file, sample, 1-4, 3-1
program listings, 1-5, F-2, F-5, F-9, F-12
prologues (8086), 1-6
prompting, 2-5

register initialization (8086), 3-2
register mapping, 1-8
REL control (CONV86), 1-6,2-3, 3-2,3-11
relative addressing, 3-2
relocation & linkage (8086)

errors/warnings, 1-6, G-l
requirements for conversion, 1-1, 1-3,3-1
reserved names, 1-10, D-l

SOURCELIST control (CONV86), 1-1,2-3
stack, CONV86 handling of, 1-8
stack segment (8086), 1-7
STKLN directive (8080), 1-7, C-l
symbol typing, 1-9

timing delays, software, 1-11
TITLE control (CONV86), 2-2

WORKFILES control (ASM80), 1-10
WORKFILES control (CONV86), 2-3

Index-l

Notes:

Notes:

Notes:

Notes:

Notes:

MCS-86™ Assembly Language Conve
Operating Instructions for ISIS-II U~

980064

REQUEST FOR READER'S COMMENTS

The Microcomputer Division Technical Publications Department attempts to provide documents that m
the needs of all Intel product users. This form lets you partiCipate directly in the documentation procesl

Please restrict your comments to the usability, accuracy, readability, organization, and completenesl
this document.

1. Please specify by page any errors you found in this manual.

2. Does the document cover the information you expected or required? Please make suggestions
improvement.

3. Is this the right type of document for your needs? Is it at the right level? What other type:
documents are needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this document on a scale of 1 to 10 with 10 being the best rating.

NAME ___ DATE ______________ __

TITLE __ ___

COMPANY NAME I DEPARTMENT __ __
ADDRESS __ __

CITY __ ------------------------ STATE ____________ _ ZIP CODE __________ __

Please check here If you require a written reply. 0

) LIKE YOUR COMMENTS ...

iocument is one of a series describing Intel products. Your comments on the back of this form will
us produce better manuals. Each reply will be carefully reviewed by the responsible person. All
lents and suggestions become the property of Intel Corporation.

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 1040 SANTA CLARA, CA

POSTAGE WILL BE PAID BY ADDRESSEE

Intel Corporation
Attn: Technical Publications MIS 6-2000
3065 Bowers Avenue
Santa Clara, CA 95051

"""
NO POSTAGE
NECESSARY

IF MAILED
IN U.S.A.

INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, CA 95051 (408) 987-8080

Printed in U_S.A.

