1960~ Processor
Software Utilities
User’s Guide

Order Number: 485277-007

Revision
-001
-002
-003
-004
-005
-006
-007

Revision History
Original Issue.
Minor corrections.

Revised for CTOOLS960 R4.5 and GNU/960 R2.4.

Revised for R5.0.
Revised for R5.1.
Revised for R6.0
Revised for R6.5

Date

12/92
09/93
05/94
02/96
01/97
12/97
12/98

In the United States, additional copies of this manual or other Intel literature may be obtained by writing:

Intel Corporation
Literature Sales

P.O. Box 5937

Denver, CO 80217-9808

Or you can call the following toll-free number:
1-800-548-4725

In locations outside the United States, obtain additional copies of Intel documentation by contacting your local Intel
sales office.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose. Intel Corporation assumes no responsibility for any
errors that may appear in this document. Intel Corporation makes no commitment to update nor to keep current the
information contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel
product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use, duplication or
disclosureis subject to restrictions stated in Intel’s Software License Agreement, or in the case of software delivered to
the government, in accordance with the software license agreement as defined in FAR 52.227-7013.

Copyright 0 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995 Free Software Foundation, Inc.

Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice and this
permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the conditions for verbatim
copying, provided also that the entire resulting derived work is distributed under the terms of a permission notice
identical to this one.

Permission is granted to copy and distribute translations of this manual into another language, under the above
conditions for modified versions.

Intel Corporation retains the right to make changes to these specifications at any time, without notice.
Contact your local sales office to obtain the latest specifications before placing your order.

* Other brands and names are the property of their respective owners.

N
&S
printed on

recycled paper Copyright 00 1992-1994, 1996, 1997, 1998. Intel Corporation. All rights reserved.

Contents

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Overview

Software Utilities and Related ToOIS ...,
Compatibility......cooooeeiiii e
Compatibility Invocation Namesccccceeeeeeeeivivieennnnn,

DOS No Longer Supported as a HOSt.......cceeiiiiieeeeiiinniinn,

Invocation Command-lineccccoovieiiiiiiieiieeee e,
INvocation NamMEScveiiiiieiiiiice e
Options, Arguments and Modifierscccooeeeeeeeeiiiiinnnn,
File System Dependenci€s......ccccceveeeeiiviviiiiiiiiiiieeeeeenn,

Archiver (arc960, gar960)

1017003 11 o] o
Option and Modifier Arguments..............cccccevvvviinnnnnnnn.
Specifying the Object Module Format......................o.....
Temporary DIreCtory ...

Option and Modifier Referencecccvvveevviciiiiieeeeeeeeens

COFF/ELF/b.out Converter (cof960/objcopy)
INVOCALION ...
Output File Specificationcoveeeiiiiiiiiiie e,

COFF to IEEE-695 Converter (cvt960)

117003 11 o] o A

[T 71 = U1 o] g RPN
Position-independent Code, Data, and Symbols
Archives and Relocatable Objects.........ccccccceeviiiiiiinnnns
unreferenced TYPES.....covvvviviiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeeee

i960® Processor Software Utilities User's Guide

Chapter 5

Chapter 6

Chapter 7

Global Uninitialized Symbolsccccooeviiiiiiiiiiiiiieenn.
Compilation/Assembly Informationccccceevvvnnnnn.
COFF Line NUMDEerSooooeiiiiiiii,
COFF Symbol Translationccccccvvveeiiii e,
IEEE-695 BUIlt-INn TYPES ...iiiiiiieiiieeeeee e
IEEE-695 Converter Warning Messages.............cccevvvvvvnnns

Coverage Analyzer (gcov960)

INVOCALION ...ttt
EXAMPIE L.t
EXQMPIE 2.
EXaMPIE 3. i

Dumper/Disassembler (dmp960, gdmp960)
101V Tor= 1 (o] o RO PP
Dumping Absolute Symbolscccoovvviiiiiin e,
EXAMPIES ...
Archive SUPPOTITvviiiiii e
Displaying Archive Structure Information.......................
Dumping the Contents of Archive Members

Linker (Ink960, gld960)

(@ YT V=

Understanding Memory Blocks and Sections.....................
ELF/DWARF SECHONSuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieee
Named BSS SECHONScuvviiiiiiiiiiiiiiieeeeeeeee e

Working with Linker Directive FilesS............covvviiiiiiiinennnn.

Linker INVOCALIONuuuueiiiiiiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeeeeeees
Specifying Object Files ...,
Specifying Libraries ..o,
Specifying Linker-directive Filesccccooeiiiiin.
Naming the Output File............ccccooiiiiis
Incremental LinKinguueueieiiieiiiiiiiiiiiiiiiiiiiiiiiiiieneens

Contents

Chapter 8

Object Module Format Compatibilitiescceeeeeninis 7-14
Link-time Optimizationoviiiiii i, 7-16
Using calljx with the i960® RP Processor 7-19
Binding Profile Counters to Non-Standard Sections........... 7-19
Environment Variables............ccccccco 7-20
Library Naming Conventions and Search Order................. 7-21
Library Search Order When i960 RP
Architecture Is Selectedooovvviiiiiiiiiii e, 7-24
Linker Options Referencecccccccvvviiiiiiiiiiiiiii 7-24
Macro Processor (mpp960)
mpp960 Message Prefixesccccvvvvviiieieeee, 8-1
INVOKINGg MPPIB0cooiiiiiiiiie e 8-2
Lexical and Syntactic Conventions...........ccccceeeeeeiieeeeeeeeeee, 8-5
NBIMES. .. 8-5
QUOLEd SEINGS ... e e e 8-5
(@1 =T g 0] 1= o E R 8-6
COMMENES. ...t e e eeeees 8-6
How t0 INVOKE MACIOSccvvvvviiiiiiiiiiiiiiiiee 8-6
MacCro INVOCALION......ccevviiiiiiiiiiiiiiiii e 8-6
MacCro ArQUMENTSuuieiiiiiis et e e e et e e e e e e 8-7
Quoting Macro Argumentsccceeeeeeeeeveiiiiiiieeeeeeeeeennnns 8-7
Macro EXPanSIioNcoovvvveiiiiiinieee e 8-8
How to Define New MacCroS.............ccuvvviiiiiiiiiiiiiiiiiiiiiineee, 8-8
Defining @ Macro.........ccceeiiii i 8-8
Arguments t0 MacCrOSccuvvieiviiiiii e e e 8-9
Special Arguments to MacroS.............cocovvvviiiiiieeeeeeeennn, 8-10
Deleting @ Macrocceeieiieiiiieciee e 8-11
Renaming MacrOSccoeovviiiiiiiiii e 8-12
Temporarily Redefining Macros............cccooeeevvvviiiieenennn. 8-13
Indirect Call of Macros...........cccceeeeiiiiiee, 8-13

Indirect Call of BUIlt-INS........coovieieeiieeeee e 8-14

i960® Processor Software Utilities User's Guide

Conditionals, Loops and RecCursion.............ccccvvvvvvvvnceeennn. 8-14
Testing Macro Definitionscccooooeeiiviiiiiiiii e, 8-14
Comparing StriNgS.........couuviiiiiie e 8-15
Loops and RECUISION........ceeiieeeiiiiieiiiicee e 8-16

How to Debug Macros and Input............cccceeeeei i, 8-16
Displaying Macro Definitionscccccceeeeeieeeieiieiiinnnnnn. 8-16
Tracing Macro Callsooovviiiiiiiieiicieee e, 8-17
Controlling Debugging OUtpULcceeeeeeiiieiiiiiiiin, 8-18
Saving Debugging Outputccceeeeeeiieeeiiieee, 8-19

INPUL CONLIOL ... e 8-19
Deleting Whitespace in Input...........ccccccviiiee e, 8-19
Changing the Quote Characters..............ccceevvvvvvvnnennnnn. 8-20
Changing Comment Delimiters..........cccceeeevvvvviiiiiicenennn. 8-21
SaviNg INPUL ..o 8-22

File INCIUSIONuiiiiiiiiiiiiiiiiiii e 8-22
Including Named Files.........ccccoooeeiiiiiiiiiiiie e 8-22
Searching for Include FileS.........cccoovviiiiiieiieeeee, 8-23

Diverting and Undiverting Outputcccceeeeiiiieeieriieeeeiinns 8-23
Diverting OULPULcooeeeeiieeeiee e 8-24
Undiverting OUIPULoooviiiiieie e, 8-25
Diversion NUMDErSccooiiiiiiiiiiiiiiiiiiiieieieeveviieeeeees 8-26
Discarding Diverted TeXtccccceeevvviiiiiiiiiiiieeeeeeeeeeiinn, 8-26

Macros for Text Handlingccooovvviiiiiiiiin e, 8-26
Calculating Length Of Strings.......ccccoeeevieeeiiiviiiiiinn, 8-26
Searching For Substringscccovvvviiiiiii e, 8-27
Searching for Regular EXpressionsccccceevvvvvvvvnnnnn. 8-27
Extracting SUbstringsccoeeeiiiieeiiiee e, 8-28
Translating Charactersccoeeeeviieiiiiieiieee e, 8-28
Substituting Text by Regular Expression............ccccc...... 8-28
Formatted OUIPUL.........ccooviiiiiiie e, 8-29

Macros for Doing ArithmetiC...........ccoovvviiiiiiii e, 8-30

Vi

Contents

Chapter 9
Chapter 10
Chapter 11

Chapter 12

Chapter 13

Chapter 14

Decrement and Increment Operators.........ccceeeeeeeeeennn.. 8-30
Evaluating Integer EXpressions..........cccvceeeieeieeeeeenn, 8-30
Running Host Commands...........ccccceeeiiieeiiiiiiceeiiec e, 8-31
Executing Simple Commandsccevvviiiiiei e, 8-31
Reading the Output of UNIX Commands....................... 8-32
EXIt COUBS...oviiiiiiiiiiiiiiiiii 8-32
Making Names for Temporary Filesccccccceeeeeeeeeenn. 8-32
Printing Error MESSAQEScccvvvviviiiiiieeeeeeeeeeeiie e 8-33
Exiting from mppO60..........cooiiiiiiiiiii e, 8-34
Compatibility with Other Macro Processorsccccccuuvee. 8-34
Extensions in mMpp960...........cccovvviiiiiiii e, 8-34
Facilities in UNIX System V m4 not in mpp960 8-36

Munger (gmung960)
Name Lister (ghm960, nam960)
ROM Image Builder (grom960)

1017003 11 o] o A 11-1
USING gromO60cccevviiiiiiiiiiiiiiii 11-3
Creating Binary IMagescceveeiviiiiiiiiiiiiieiiieieeeeeeeeeeeee 11-4
Converting the Image to Hex FilesS...........ccccvvvviviiiiiiiinnnnn. 11-4
EXaMPIE L ..o 11-5
EXaMPIE 2 ..o 11-5
EXamMPIe 3 ..o 11-5
ROM Image Builder (rom960)
Rommer INVOCALION...........cccvvviiiiiiiiiiiiiiiie 12-3
Directive Filescccccciii 12-3
Directive Referencecccccociiiii 12-6

Section-size Printer (gsize960, siz960)
117003 11 o] o 13-1

Statistical Profiler (ghist960)

vii

i960® Processor Software Utilities User's Guide

viii

Chapter 15
Chapter 16

OVEIVIEW ... 14-1
How Statistical Profiling Works...........cccccovvveeeii i, 14-2
Parameters that Effect Profilingcccccooeiiiiiicceennn. 14-4
Bucket Size (__buck_Siz€).........ceeeiiiiiiiiiiiiii e, 14-6
Timer Frequency (__timer_freq)covvvvviiieiiieeeeeeeen, 14-7
Profiling region (__prof_start and __ prof_end)............... 14-7
Resources RequUIirementS..........ooeeeeviiiieiiiiiiiiiiic e 14-10
Library Initializationooiiiiiiiiieiiccee e, 14-11
MONOBOcuiiiiiiiie et e e e e e e e rreeaeeees 14-11
IXWOTKS ..o, 14-11
101V Tor= 1 1 o] o HO PP 14-12
UsiNg ghistO60cuuiiiiieiiiiiece e 14-13
Description of File Formats Emitted by the Library............. 14-15
Binary Data FOrmat...........ccoouvviiiii e 14-16
ASCII Data FOrmat..........coooveeiiiiiiiiiiiei e 14-16
Example Usage of ghist960cvviiiiiiiiiiiieiieeceeiiiis 14-17
Stripper (gstrip960, str960)
Assembly Language Converter (xlate960)
101V Tor= 1 (o] o RO PP 16-2
Command-line Invocation.............ccccccvvivviviiiniiiiiieeeeee. 16-2
Invocation Through the Assembler..........cccccceeeeeennnn. 16-3
Invocation EXamplesccceeeeiiieeiiiieiiiiiciee e, 16-4
Output File Format............cccoiieiiiiiiiiie e, 16-4
@1 g 11 (=] = Tox 1 0] o 16-5
Translation Errors.........cccceveeiiiiiiiiiiiiiiiiiiiineens 16-5
Translation Warningscoovvvviiiiiiiieeeeceeeiiiees e eeeeeennns 16-5
KNOWN LiMItatiONSuuuuuiiiiiiiiiiiiiiiiiiiiiieiiiiiinennnnnnnnnnnnnnnne 16-6

Appendix A Linker Command Language

(Ta] 1o To 18 Tox i o] o RPN A-1
Expressions and Operators.ccoouvevieiiiiiiieseeeiiiinens A-2

Linker Directives ReferenCe.........oovuuvveeiiiiieieeeeieeeeeeaeen, A-4

MEMORY: Configuring Memory Regions...................... A-5
Default Linker AllOCAtioN...........cccvvvviiiiiiiiiiiiiiiiiiiiieeeeee, A-7
SECTIONS: Defining Qutput Sections..........cccceeeeevveeens A-8
FORCE_COMMON_ALLOCATION: Allocating
Space for Common SymboOIS..............uuviiiiiiiiiiiiiiiiiiiinns A-25
DEFINED: Finding Symbols ..., A-25
ADDR, ALIGN, NEXT: Finding Addresses.................... A-25
SIZEOF: Finding Section Sizes..........ccccccvvviiiiiiiiinnnnnns A-27
STARTUP: Specifying a Startup File.............ccccvvvvennns A-27
ENTRY: Defining the Entry POINt...........cccvvvvvvvviiiennnnn. A-28
PRE_HLL(): Specifying Libraries to be
Processed Before the High-level Libraries..................... A-28
HLL: Specifying High-level Libraries............cccccoeeeee. A-29
SYSLIB: Specifying Low-level Libraries........................ A-31
[NO]JFLOAT: Supporting Floating-point Operations A-31
SEARCH_DIR: Extending the Search Path.................. A-32
INCLUDE: Including Additional Directive Files.............. A-32
TARGET: Using the Search Path for Directive Files..... A-33
CHECKSUM: Preparing for the Bus Confidence Test .. A-33
OUTPUT: Naming the OQutput File..........cccccoeevieeenininnn, A-34

Linker Directive Files..........ccccccooiiiiiiiie A-35

Appendix B Finding Information in Object Files

Using the Common Object File Library: COFL.................. B-1
Extracting File Header Information................cccevvveveeeee. B-2
Function ReferenCe.......ccooovv v, B-3

Appendix C Common Object File Format (COFF) and

Common Archive File Format (CAFF)

CharacteristicsS Of COFF ... C-1
Definitions and CONVENLIONSovvveveii e C-2
=T 110] F TP C-2

i960® Processor Software Utilities User's Guide

Physical and Virtual Address........cccceeeeiiiieeeeeieeeiiiiiinnn, C-3
File Header ..o C-3
File Header Declaration.............ccccccuvummmmimmmnnniniinniinnnnnns C-4
File Header FIagsSccovviiiiiiiiiii e, C-5
File Type NUMDErs ..., C-6
Execution File Header Declarationccooeeiinnnes C-7
Section Headers ..., C-7
Section Header Declaration...........ccccccccvveieeieiiiinnnnnnnn. C-8
Section Header Flags...........cccoovvviiiiiiieeeeeein, C-9
SECLONS ..o C-11
(R T=] (o= 1110 o C-11
Relocation Entry Declarationccccceeeeeeeieeeeeceennnnnns C-12
Direct RelOCatioNccooviiiiieees C-13
IP-relative Relocationeuvvvieeiiiiiiiiiiiiiiiiiiiinennnns C-13
Line NUumber ENtryooovviiiiii e C-14
Symbol Table........ooiiiiie e C-15
Symbol Table ENtriesccccceeeiieeiiiiiiiiee e, C-16
Structure for Symbol Table Entries.............eeeevvvvivinnnnnn. C-17
Symbols and Inner Blocks .bb/.eb............ccccciinn. C-18
Symbols and Functions .bf/.ef, .target..........cccccovvnnnnnnnn. C-20
Special SYymbols...........oooiiiiii C-20
SYmMbOl NaME......iiiiiiiicee e C-22
Storage ClasSes.........vvviiiiiiieeeceeece e C-23
Storage Classes for Special Symbols.............cccceeeeennnn. C-25
Call Optimizationciiiiiiii e, C-25
Symbol Value Field...........ccccoooiiiiiiiiie e, C-26
Section Number Field..............cccooi, C-27
Section Numbers and Storage Classes........ccccceeeeeennnn. C-28
TYPE ENtIY C-30
Type Entries and Storage ClasSescccccceeeeiiieieeeeeeenn, C-32

Auxiliary Table ENtriescccceeeiiiiiiiiiiiieeeeieen e C-33

Contents

FIlENamMES .. .covviieeeeee e C-35
Y= Tox 1[0 o C-35
Tag NAMES ..o C-36
ENd of StrUCIUIecoovveiceeee e C-36
FUNCLIONS ..ot C-36
N = £ TSP C-37
End of Blocks and FUNCLIONSceeveeiiiiviiieeeeeeiinee, C-38
Beginning of Blocks and Functions.............ccccceeeieeeeeann. C-38
Names Related to Structures, Unions, and
ENUMErAtioONS .. .covniiiieeeeeee e C-38
Auxiliary Entry Declarationcccccveveviiiieieniniinnnnns C-39
String Tableoovveiiei C-41
ACCESS ROULINESciieeeii e C-42
Archive Library Format............oooooiiiiiiie C-42
The Archive ldentification Stringccccccceeevviiiiiiiiiiciens C-43
ArChive MEmMDEIScveicie e C-44
The Symbol Table........ccoooi e, C-47
Appendix D HP/MRI IEEE 695 Object File Format
TerMINOIOQY ...cevvviiieii e D-2
NOMENCIALUIE......e i D-3
Number FOrmat.........ccoooovviviiieiiee e, D-3
Name FOrmat.........oooiiiiiiiii e D-3
Information Variablescccooovvieiiiiiiiiiieiiieee, D-4
Line NUMDBEIS......iiiiieeee e D-5
YD et D-5
Object File COMPONENLESvvvviieiiieeiiieieeiee e ee e, D-10
Header Part........coooovviiiiiiie e D-11
AD EXteNSIion Part.......cccooovveiieiiiiiieeeeeee e, D-14
Environmental Part...........ccoooeeviiiiiieiiee e D-15
EXternal Partccoooouveiiiiie e D-17
Y= To (o] g T == A D-18

Xi

i960® Processor Software Utilities User's Guide

Xii

Index
Examples

Debug Information Partcccooevvviiiiiiiiie e,
Data Part.......cccoiiii i,
Traller Partooeiiiieeeeeee e
HP/MPI IEEE-695 Format Object File Semantics...............
AD Extension Part and Environment Part......................
Public/External Part...........cocveeiiiiiieieeieeeeeeee e,
SECHON Part.......ocviiiiiiie e
Debug Part.........ccooiiiiiii e
BB BIOCK. ...ttt
BB3 BIOCK.....cuuiiiiiiiee e
BB4 and BB6 BIOCKScccvveieeiiiiiieeeeeiieeeeeeee e,
BB5 and BB10 BIOCKSvovievieiiieeiieiceeeeeeee e,
Miscellaneous ReCOrds........ccooevvvviiiiieiiiiiieeeeeeie e
Module Miscellaneous Records..........cccoeevvvvveeeeeeeerennn...
Variable Miscellaneous Recordscccceeevvvvvveiieenennne.
Procedure Miscellaneous Records...........ccceeeveeevevvnnnn...
General Syntax RUles.............ccoovviiiiii,
Parameters In Miscellaneous Records.............cccevvenn....
Optional Parameter Fields..........cccccceeeiiieiiiiniiien,
Codes for Miscellaneous Records............ccvveeeeeeeevnnnnnnn.

Policies for Adding and Modifying Miscellaneous
RECOIS... e

Policies for Generating and Reading Miscellaneous
RECOIAS ...

C-1 File Header Declaration............ccccceeveeeiiiiiiiieinnenne,
C-2 Section Header Declaration..........cccccccvvviiiiiiinnnnnnnn.
C-3 Relocation Entry Declaration...............cccccovvvvveennennnn.
C-4 Line Number Grouping.........ccccvvveeeiiiiieeeeeeeeeennn
C-5 Line Number Entry Declarationcccccceeeeeeennnn.

Contents

C-6 COFF Symbol Tableccccooeeiiiiiiiie e, C-16
C-7 Symbol Table Entry Declaration..............ccceeeeeeiienns C-17
C-8 Nested BIOCKSuuviviiiiiiiiiiiiiiiiiieieieeieeeeeeeeeeee e C-19
C-9 Example of a Symbol Tableccccccvviiiiiieeinniinnns C-19
C-10 Auxiliary Symbol Table Entry.............ccoeevivvvvieiniininnns C-39
C-11 Archive Member Headers.............ccoceimvvniiiiiniinnnnnnee. C-45
Figures
2-1 Archive Member Replace and Update Operations 2-6
7-1 C Program StOrageccuuvvvuiiiiieeeieeeinniiianeeeeeeeennnns 7-3
12-1 rom960 Rommer Operations............ccccuvvvvvveeeeeeennnnn. 12-1
12-2 Data Placement in Memory Image.........ccccccevvvvveeeee. 12-2
12-3 Dimensions of a Memory Image.........cccccvvvvvveeiveennnee. 12-20
12-4 split Command Exampleccevvvviiiiiiiiiiiiiiiiinnn, 12-23
C-1 Object File FOrmatcovvvviiiiiiiiiiiiiiiiiiiieeieieeeeeeeee C-2
C-2 Flag Field Valuescooovvviiiiiiiiiiiiiiiiiiiiiiiiiiiiieee C-10
C-3 String Table.......oooviiiiiiiiiiiiiiiiii C-42
C-4 An Archive Library........cccooooviiiiiiiiiiiiiiiiiiiiiiiieeeee C-43
C-5 An Archive Member..........ooiiiiiiiieeeie e C-44
C-6 The Archive Symbol Table ..., C-48
Tables

1-1 1960 Processor Software Utilities..............ccccvvvvveeeeenn. 1-2
1-2 Invocation Names for Backwards Compatibility......... 1-3
2-1 Archiver OptionSooovviiiiiiiie e 2-2
2-2 Archiver Option Modifiers...........ccccovvvviiiiiiiiiieeeccins 2-3
2-3 Verbose Modifier Information Display........................ 2-19
3-1 ¢of960 / objcopy OptioNS.........cevvvviiiieiieeeeeiieeeeeeiiinns 3-2
4-1 cVE960 OPLIONS ...evvveiii i 4-2
4-2 Mappings Between COFF and IEEE-695

BUIlt-IN TYPES ...ttt 4-6
5-1 gcovI60 CONLIOISuuueiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiiiiieeeees 5-2
5-2 gCOVIBO OPLIONSevuvrriiiiiiiiiiiiiiiiiiiiiiiiiiiniiiiennineinnenes 5-3

Xiii

i960® Processor Software Utilities User's Guide

6-1 dmp960/gdmp960 OPtioNS.........cceeviveeriiiiiiie e, 6-2
7-1 LinKer OptioNS.......ocoviiiiiiiie e 7-7
7-2 Branch-and-link and System-call Optimization 7-17
7-3 Supported Input/Output Architecture Combinations .. 7-26
9-1 gmung960 OPLtIONS......ccceiiiieiiiiicie e 9-2
10-1 gnm960/nam960 OPLioNS........cccevvvvvviiiieeeeeeeeeiiiiinann. 10-3
10-2 SecCtion COUES.......uuuuuurriiiniiiiiiiiiiiiiiiiineneeneneeennnnennnaee 10-4
11-1 grom960 OPLtiIONS......ccovvviiiiieei e 11-2
11-2 Section Specificationsccoevvvviiiiiiiii e, 11-3
12-1 rom960 DIreCtiVESccoeeeeiiiiiieiieeeeeee e 12-4
13-1 gsize960/siz960 OPtioNScccvvvvvvcieiiiieeeeeeeeeeeeiiiieaas 13-2
14-1 TerminolOgyuueeeieeeeiiiiiiiiie et 14-2
14-2 MONO960 Library Parameterscccceeeeeeeeeeiiiiieninnnnns 14-4
14-3 IxWorks Library Parameters..........ccccceeevieeeiiieeennnnnnnn. 14-5
14-4 Preferred Methods for Modifying _prof_start

and _prof_end.........oooeiiii 14-8
14-5 Methods of Modifying _prof_start

and _prof_end.........cccooiiiiiiii 14-9
14-6 Required RESOUICEScccevvviiiiiiiiiiciee e, 14-11
14-7 ghist OPtIONSuiii i 14-13
14-8 Procedure for Profiling Under MON960 and IxWorks 14-14
14-9 File Formats Generated by the ghist960 Library 14-15
14-10 Binary Data Format...............ccooevvviiiiiiin e, 14-16
14-11 ASCII File FOrmMatuuueemmmmminiiiiiiiinennniiiennnnnnnnnnn. 14-16
14-12 Examples Parameters..........oooovvvvevviiiiiseeeeeeeeeiin, 14-18
15-1 str960/gstrip960 OpPtioNSccvvvvviiieeiieeeeeeeeeeeeeiinns 15-2
16-1 Instructions Translated by xlate960...................c...e.... 16-1
16-1 Xlate960 OpPtioNSccevvviiiiiiiie e e, 16-3
A-1 Order of Precedence for Operators..............oceeeevennes A-2
A-2 Linker DIFeCHIVES........cccvvviiiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeee A-4
A-3 Memory and Section Attributescccceeeeiiiiieeeennnen, A-7

Xiv

Contents

A-4 SECTION Keywordsccovvvvviiiiiiieieeeeeceeiiieee e A-10
A-5 COFF Binary Representation of NOLOAD,

DSECT, COPY SEeCHONSuievieiiieeeeeeeieeieeiee e A-23
A-6 ELF Binary Representation of NOLOAD,

DSECT, COPY SECHONSuvvviiiieeeeeieeeeeieeiee e A-24
B-1 Common Object File Library (COFL) Functions B-1
B-2 Common Object File Interface Macros...................... B-3
C-1 File Header CoNtentsccccuvvvmvviimimmininiieeieeeeeeeeeen C-4
C-2 File Header FIags.........cooooiiiiiieeee C-5
C-3 Architecture Types of File Header Flags C-6
C-4 Standard Output (a.out) File Headercc.co...... C-7
C-5 Section Header Contents...........cccevvvvvvrrmeieeeereeeeeeen. C-8
C-6 Section Header Flags..........ccooooeiiiiiiiiiiiiiiiieeeeeeee C-10
C-7 Relocation Entry FOrmatcceevviiiiiiiiiiiiiiiiiinenen. C-11
C-8 Relocation TYPESovviiiiiiiiiiiiiiieeeeeeeeeeee e C-12
C-9 Symbol Table Entry Formatccovvvvviviiiiiiiiiinennn. C-17
C-10 Special Symbols in the Symbol Table........................ Cc-21
C-11 Symbol Name Field.............cooovviiiiiiiiiiiiiiiiiiiiiiiiieee C-23
C-12 Storage ClasSesS.......cccocuuuumiriiiiriiiiriiirieeieeeeeeeeeeeeeeees C-23
C-13 Restricted Storage Classes..........cccccvvvvrmivirieeieneennn. C-25
C-14 Symbol Value Field ... C-26
C-15 Section Number Field...........covvvvviiiiiiiiiiiiiiiiiiiiiiieee C-28
C-16 Section Number and Storage Class.............ccuvvveeeee. C-29
C-17 Fundamental TYPESccovviiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeee C-31
C-18 Derived Types Field Valuesccccovvvviviiiiiiinnnnnn. C-31
C-19 Type Entries by Storage Class............cccccvvvvvviieeennnn. C-32
C-20 Auxiliary Symbol Table Entries.............cccccvvvviiinnnenn. C-34
C-21 Format for Auxiliary Table Entries.............cccccvvvnnnnee. C-35
C-22 Tag Name ENtriesSccovvvviiiiiiiiiiiiiiiiiiiiiiieeieeeeeeee C-36
C-23 Table Entries for End of Structure............ccccccevvvveeeee. C-36
C-24 Table Entries for FUNCHONccovvviiviiiiiiiiiiiiiiieeee, C-37

XV

i960® Processor Software Utilities User's Guide

C-25 Table Entries for Arraycccceveieeeeeeeeieiiiiieee e, C-37
C-26 End of Block and Function Entriescceeee. C-38
C-27 Beginning of Block and Function Entries................... C-38

C-28 Entries for Structures, Unions, and Enumerations..... C-39
C-29 Size and Contents of Archive Member Headers........ C-46

D-1 Initial Bytes of IEEE Elements..............ccoevvvivvvinnnnnnn. D-2
D-2 HP/MRI IEEE-695 Object-file Representation of
High-level Types ..., D-5
D-3 HP/MRI IEEE-695 Object-file Built-in Types.............. D-8
D-4 Processor Names........ccoveivieiiieiiiiieeeeeeeeeee e, D-12
D-5 Attribute Definitions for the AD Extension Part.......... D-15
D-6 Attribute Definitions for the Environmental Part......... D-16
D-7 Attribute Definitions for the External Part D-18
D-8 Summary of Permitted Block Nesting...............cc....... D-22
D-9 Attribute Numbers, Blocks, and Descriptions D-27
D-10 Miscellaneous Record Codes.......cccccvvvviiiiieieiiiiineenns D-46

XVi

Overview

This chapter introduces the i960® processor software utilities and their
documentation. It also describes the conventions used throughout this
manual.

Software Utilities and Related Tools

The 1960 processor software utilities are part of a toolset for developing
embedded applications for the i960® Sx, Kx, Cx, Jx, Hx, and Rx
processors.

This toolset contains a C/C++ compiler, several libraries, an assembler, a
debugger, and the utilities described in this manual and in on-line
hypertext. For information on all the related documentation, including the
tools hypertext, see yo@etting Started with the i960® Processor
Development Toolsanual.

Each utility also has a help option that displays a summary of the utility’s
invocation options.

Table 1-1 lists the software utilities that are described in this manual.

11

i960® Processor Software Utilities User's Guide

1-2

Table 1-1

i960® Processor Software Utilities

Utility
archiver

converters

coverage
analyzer

dumper/
disassembler

linker

macro
processor

munger

name lister

ROM image
builders

section-size
printer

statistical
profiler

stripper

Assembly
Language
Converter

Names

arc960,
gar960

cof960
/objcopy,
cvt960

gcov960

dmp960,
gdmp960

gld960,
Ink960

mpp960

gmung960

gnm960,
nam960

rom960,
grom960

size960,
gsize960

ghist960

gstrip960,
str960

xlate960

Function

creates and maintains libraries and
archives.

reorder bytes as big-endian or
little-endian and convert between
b.out format, COFF, ELF, and
IEEE-695 format.

facilitates testing of i960 processor
software applications.

disassembles and displays object
and archive file contents.

combines object files into
executable or relocatable files.

creates and interprets macros.

modifies text section and/or data
section load address(es) in an
object file.

prints object file and library symbol
table information.

create a memory image file from
an object file.

displays section and file sizes of
object files and libraries.

generates information about
application’s runtime behavior.

removes symbolic information from
an object file.

converts assembly language code
from 80960 core processors (e.g.,
i960 Cx, Jx, and Hx processors) to
its COREO (e.g., 80960RXx)
equivalent.

See
Ch.

Ch.

Ch.

Ch.

Ch.

Ch.

Ch.

Ch.

Ch.

Ch.

Ch.

Ch.

Ch.

2

3,4

10

11, 12

13

14

15

16

Overview

Table 1-2

Compatibility

Code generated by Release 6.5 is fully compatible with code generated
with the Release 5.0, 5.1 and 6.0 tools. Further, source programs compiled
with Release 5.0 are accepted by Release 6.5 without change. Almost all
environment variables and invocation options are unchanged. Object
modules generated with Release 5.0, 5.1, 6.0 can be linked with objects
created with Release 6.5. However, object modules compiled with Release
5.0 for the 1960 Rx processor should be recompiled with Release 6.5 in
order to generate objects that are forward compatible with future i960 Rx
processors.

The software utilities also accept output from CTOOL S960 Release 3.0
and later, and from GNU/960 Release 1.2 and later.

Compatibility Invocation Names

Table 1-2 lists the invocation names to use for backwards compatibility

with GNU/960 Release 1.3 and later, and for backwards compatibility with

CTOOL S960 Release 3.5 and later. (Only tools with more than one name
arelisted in thistable.)

In some cases, using the alternate invocation name causes the tool to
behave differently. Invocation name details are provided in the chapter for
the tool in question.

Invocation Names for Backwards Compatibility

Utility GNU/960 CTOOLS960 See
archiver gar960 arc960 Ch. 2
b.out / COFF / ELF converter objcopy cof960 Ch. 3,4
dumper/disassembler gdmp960 dmp960 Ch. 6
linker gld960 Ink960 Ch.7
name lister gnm960 namo60 Ch. 10
section-size printer gsize960 size960 Ch. 13
stripper gstrip960 str960 Ch. 15

1-3

1

i960® Processor Software Utilities User's Guide

1-4

DOS No Longer Supported as a Host

Asof release 5.1, CTOOL S no longer supports DOS as a host. For PC
development, CTOOL S now supports Microsoft* Windows* NT* and 95.
These platforms provide afar more robust development environment, and
alow PC usersto run CTOOL S without the PharLap* software required
by previous versions.

Invocation Command-line

The utility programs and tools described in this manual are command-line
driven. This meansthat to use these tools, you must either:

e type invocation commands in at your host system’s command prompt;

e use command scripts, response files, or batch files that can execute on
your host; or

e use atool such as Microseftake, Opusmake, or UNIX* nake.

There are two similar styles of invocation command-line, resembling other
Windows and UNIX program invocation commands. The primary
difference between the Windows and UNIX style command-lines is that
case (upper and lower) is significant in UNIX paths, directories, and
filenames, whereas Windows does not recognize case. The other
difference between Windows and UNIX style command-lines involves
punctuation of pathnames and invocation options, as described below.

Invocation Names

The command-line for each utility consists of a program name (e.g.,
Ink960 or mpp960), options (optional), and filenames identifying tool input
and/or output. Some tools have more than one invocation name, for
compatibility with earlier versions of the tools. (See Compatibility on page
1-1)

Overview

Options, Arguments and Modifiers

Invocation command options must be preceded with a special character

that identifies them as options. On Windows, this can be either the hyphen
character (-) or the slash (/) character. On UNIX, thisisthe hyphen

character. Caseissignificant in command options, arguments and

modifiers, unless the argument is a Windows pathname element. Some
invocation options require or accept arguments, and some invocation

options have optional modifiers. Some of the tools can be used without

options, modifiers or filenames, depending on the tool’s default settings.
Refer to the chapter describing the desired software tool for information on
its invocation options.

File System Dependencies

You must observe the conventions and restrictions of your host
environment’s file system. Since the example commands in this manual
are from the UNIX environment, they work in Windows only if you use
the backslash § character in pathnames, rather than the slgsh (
character.

Archiver (arc960, gar960)

R

Use the archiver to create and maintain archive files of:

* ASCIl and COFF files (in text or mixed-format archives)
¢ COFFfiles (in COFF libraries)

* b.out-format files (in b.out libraries)

e ELF-format files (in ELF libraries)

For information on linking with libraries, see the linker chapter.

NOTE. To ensure correct formatting, delete and recreate b.out-format
libraries created with a GNU/960 archiver before Release 1.3.

Invocation

Invoke the archiver as:

Bar c9605) . i s .

Hyar 96011 option [-nodifier...] archive [nane...]

ar c960 invokes the archiver, providing backwards
compatibility with CTOOL S960 R3.5 or later.

gar 960 invokes the archiver, providing backwards
compatibility with the GNU/960 R1.2 or later.

option isone or more options listed in Table 2-1.

nodi fier is one or more modifierslisted in Table 2-2.

2-1

i960® Processor Software Utilities User's Guide

archi ve isthe archive filename. Unlessyou specify a
complete pathname, the archive must be in the

current directory.

names is one or more member or external filenames.
Note that when you do not specify afilename or
use the -F option, the archiver creates a COFF

archive.
Table 2-1 Archiver Options
Option Effect See Page
d deletes members from the archive. 2-10
F specifies the desired object module format for the an empty library. 2-11
Object formats are b.out, COFF, and ELF.
h displays help information. 2-11
m moves members to the end of the archive or to the specified position. 2-13
p prints members in the archive. 2-14
r replaces existing members or adds new members. 2-15
s creates or updates library symbol table. 2-16
t prints member information or the archive table of contents. 2-17
u updates existing members by the modification dates, or adds new 2-17
members.
\Y reports the archiver version and continues processing. 2-20
v960 reports the archiver version and stops processing. 2-20
X extracts members to files without modifying the archive. 2-21
z suppresses time stamp in archive header. 2-22

2-2

Archiver (arc960, gar960)

Table 2-2 Archiver Option Modifiers

Modifier = Used With Effect See Page

a pname r,u,orm adds or positions members after the pname 2-7
member.

b pname r,u,orm adds or positions members before the pname 2-8

i pname member.

c roru suppresses the archive-creation message. 2-9

I any option uses the current working directory for temporary 2-12
files.

o] X uses the member last-modified date as the 2-14
extracted file-creation date.

s any option creates or updates the library symbol table. 2-16

or none

u r updates members only when the member last- 2-17
modified date is older than the file last-modified
date.

v any option reports the archiver progress. 2-19

Option and Modifier Arguments

Invoke the archiver with an option and one or more modifiers. Some

modifiers can operate without the option (see Table 2-2).

Some modifiers require arguments. The archiver interprets any string

following such a modifier as the argument. Omitting an argument at the
end of the command line causes an error. For example:

arc960 -rb xy
No archive nane specified

2-3

i960® Processor Software Utilities User's Guide

2-4

Specifying the Object Module Format

By default the archiver creates librariesin COFF format. However, the
default is overridden when you:

» gpecify adifferent format with the - F option. (See page 2-11)
» gpecify aobject file on the command line that is not in COFF format.

For example, to create an empty archive in COFF format enter the
command:

gar960 -u /i bnane. a
To create an empty library in ELF format, use the - F option:
gar960 -Felf -u /ibnane.a

However, when you instruct the archiver to add a non-COFF object file to
a new archive, the archiver uses the object file’s format. For example, if
you enter the command:

gar960 -u /ibnane.a elf_onf_file.o

the archiver creates a new library in ELF format. When you userthe
option to specify a library format and try to add an object file in a different
format, the archiver uses the format of the object file. For example:

gar960 -Felf -u /ibnane.a coff_onf_file.o
creates a new library in COFF format.

Once a library is created, all object files within it must be of the same
format. For example, trying to add an ELF format object file to a COFF
format archive produces an error message.

Archiver (arc960, gar960)

Temporary Directory

The archiver creates and deletes temporary files. Y ou can choose the
temporary working directory:

Specify the local (1) modifier with adirectory argument in the archiver
invocation.

Define the TMPDI R environment variable. When you do not use the
modifier, the archiver uses the directory specified in TMPDI R.

Without either | or TMPDI R, the archiver uses the directory specified in
P_t npdi r, defined in the st di 0. h standard C header file.

Option and Modifier Reference

Y ou can provide the archiver with the names of external files that you
would like added to the archive, or you can tell the archiver the names of
any archive members that you would like extracted into external files.

Use the options and modifiers for the following operations:

To create an archive or to modify the archive members, user or u (see
Figure 2-1).

To modify an archive without modifying the members or externa files,
use mor s.

To delete the members, used.

To modify the external files, use x.

To print information about the archive and its members without
modifying the archive contents, usep ort .

To display the archiver operation, usev.

To display the archiver version information, use Vv or v960.

2-5

i960® Processor Software Utilities User's Guide

2-6

Figure 2-1

Archive Member Replace and Update Operations

(roru)
No Create
Archive
Yes ‘
Y Y
Capture Next
—> Filename in L A
Namelist
Last
Filename Yes End
Processed?
MAedgt')\éervtvo Filename =
2
Archive Any Member~
No
Replace
Existing Member
(r Only) in Archive
Yes A
File More
Recent Than
(u Only) Member? (u Only)

0OsSD308

Archiver (arc960, gar960) 2

This section describes the options and modifiers alphabetically.

a: After

Modifier: Positions
members after a
specified member

a pnane

pnarme is the name of an archive member used as a
positional reference.

Discussion

By default, the archiver places new members at the end of the archive. To
place new archive members immediately after an existing member, use a
with replace (r) and update (u). To reposition existing members, use a
with move (m).

If you specify more than one position modifier, the last one takes effect.

Examples

1. Thefollowing example placesfil e2. o immediately after fil el. oin
l'i bx. a:
arc960 -ma filel.o libx.a file2. 0

2. Thefollowing example replaces existing membersin| i bo. a with
corresponding files from the current working directory, positioning
any new membersimmediately after fil el. o:

arc960 -ra filel.o libo.a *.0

2-7

i960® Processor Software Utilities User's Guide

2-8

Related Topics

Before Move Update
Insert Replace
b: Before

I; Insert

Modifier: Positions
members before a
specified member.

b pnane

i pnane

pnarme is the name of the archive member used asa
positional reference.

Discussion

By default, the archiver places new members at the end of the archive. To
place new archive members immediately before an existing member, useb
ori with replace (r) and update (u). To reposition existing members, use
b ori with move (m).

If you specify more than one position modifier, the last one takes effect.

Examples

1. Thefollowing commands both placefi | e2. o immediately before
filel.oinlibx.a:

arc960 -nb filel.o libx.a file2.0
arc960 -m filel.o libx.a file2.0

Archiver (arc960, gar960) 2

2. Thefollowing example replaces existing membersin| i bo. a with
corresponding files from the current working directory, positioning
any new membersimmediately beforefil el. o:

arc960 -rb filel.o libo.a *.0

Related Topics

After Move Update
Insert Replace

c: Create

Modifier: Suppresses
the archive creation
message

Discussion

To suppress the archive creation message, specify c.

Using the replace (r) or update (u) option with a nonexistent archive
filename creates a new archive. The archiver displays a message such as
the following on st dout :

arc960: creating archive

archi ve is the name of the new archive that you specified.

2-9

i960® Processor Software Utilities User's Guide

Example

Assuming that | i bx. a does not already exist, the following example
creates an empty | i bx. a archive without displaying an archive creation
message:

arc960 -rc libx.a

d: Delete

Option: Deletes archive
members

Discussion

To delete all members specified on the command-line, used. In release 6.0,
the archiver no longer strips the symbol table information from an archive
filewhen an element is deleted.

Example

The following example deletesfi | e1. o from1i bx. a:
arc960 -d libx.a filel.o

2-10

Archiver (arc960, gar960) 2

F: Library Format

Option: Specifiesthe
OMF for an empty

library
F{elf | coff | bout}
Discussion
This option specifies the desired object module format for the empty
library. Object formats are b.out, COFF, and ELF.
Example
The following example creates an EL F archive with member libx.c.
arc960 r -Felf libx.a libx.c
h: Help
Option: Displays help
information

Discussion
To display help information for the archiver, use the h option.

2-11

i960® Processor Software Utilities User's Guide

2-12

I: Local

Modifier: Places
temporary filesin the
current directory

Discussion

To put temporary filesin the current directory, usel . The archiver selects
a temporary working directory as described in “Specifying the Object
Module Format

By default the archiver creates libraries in COFF format. However, the
default is overridden when you:

» specify a different format with ther option. (See page 2-10)
« specify a object file on the command line that is not in COFF format.

For example, to create an empty archive in COFF format enter the
command:

gar960 -u /ibnane. a
To create an empty library in ELF format, use the -F option:
gar960 -Felf -u [ibnane. a

However, when you instruct the archiver to add a non-COFF object file to
a new archive, the archiver uses the object file’s format. For example, if
you enter the command:

gar960 -u /ibnane.a elf_onf_file.o

the archiver creates a new library in ELF format. When you use the -F
option to specify a library format and try to add an object file in a different
format, the archiver uses the format of the object file. For example:

gar960 -Felf -u /ibnane.a coff_onf_file.o

Archiver (arc960, gar960)

creates anew library in COFF format.

Oncealibrary is created, all object files within must be of the same format.
For example, trying to add an ELF format object file to a COFF format
archive produces an error message.

Temporary Directory” on page 2-4.

Example

The following example replacés| el. o andfil e2. o inli bx. a, using
the current directory for temporary files:

arc960 -rl libx.a filel.o file2.0

m: Move

Option: Repositions
archive members

Discussion

To reposition members within the archive, useTo move members

relative to another member, specify the afé@r lfefore), or inserty)
modifier. Omitting the position modifier moves the members to the end of
the archive.

Example

The following example placés | el. o at the end ofi bx. a:

arc960 -mlibx.a filel.o

2-13

2 i960® Processor Software Utilities User's Guide

o: Output Date

Modifier: Extractsa
member using the last-
modified date

Discussion

When extracting a member to afile, the archiver uses the current time and
date as the file-creation time stamp. To use the member last-modification
time and date, specify o with x (extract).

Example

The following example extractsthefi | e. o member, creating thefile. o
external file with the time and date thef i | e. o member was last modified:

arc960 -xo libx.a filel.o

p: Print
Option: Printsarchive
members

p

Discussion

To display the member contents on st dout , usep. To display al the
members, specify no member name.

To display each member name before its contents, specify thev (verbose)
modifier.

2-14

Archiver (arc960, gar960) 2

Example

The following example displaysthe sour cel. s member of | i b. src:

arc960 -pv lib.src sourcel.s

r: Replace

Option: Replaces
existing archive
members and adds new
members

Discussion

To replace or add a member, regardless of the last-modification dates, use
r. Existing members specified on the command line are replaced. New
members specified on the command line are added. To replace existing
members from all filenames in the current directory, specify no member
names.

To designate a location for new members relative to existing members, use
the after (a), before (b), or insert (i) position modifier.

To create an archive, specify r for an archive that does not exist. The
following creation message appears.

arc960: creating archive
archi ve is the name of the archive created.
Y ou can suppress the creation message with the create (c) modifier.

Creating an archive includes creating the new archive symbol table.

2-15

i960® Processor Software Utilities User's Guide

Examples

1. Thefollowing example addsfil el. o beforefile2.oinli bx. a:
arc960 -rb file2. 0 libx.a filel.o

2. Thefollowing example archives al . o filesin the current working
directory by adding to or replacing membersin| i bx. a. The verbose
(v) option displays messages on the terminal screen, indicating
whether members are added (a -) or replaced (r -).

arc960 -rv libx.a *.0

- hello.o

- proto.o

- prog_84a.o0
- str_b.o

- str_eg2.0
- str_eg3.0
- str_eg4.o0

SRR O

s: Symbol Table

Option and modifier:
Rebuilds the archive
symbol table

Discussion

To rebuild the symbol table, uses. You need not specify s with thed, r or
u option, since the archiver updates the symbol table automatically.

The's option has no effect on text archives.

2-16

Archiver (arc960, gar960) 2

Example

The following example rebuilds the symbol table of | i bo. a:

arc960 -s libo.a

t: Table of Contents

Option: Liststhe
member names

t [nanes]

Discussion

To list al the membersin an archive or to list specified members, uset .
The nanes argument lists the members for which you want information.
To print atable of contents for all members, omit nanes.

The information about specified members appears on st dout .

To list the names, permissions, sizes, dates and times of the specified
members, specify the verbose (v) option. Otherwise, the archiver displays
only the member names.

Example

The following example copiesthel i bs. a table of contentsto
contents. t xt inthe current working directory:

arc960 -t libs.a > contents.txt

u: Update

Option or Modifier:
Updates archives by

2-17

2 i960® Processor Software Utilities User's Guide

comparing the file and
member dates

Discussion

To add or replace members with newer versions, specify u. List specific
members to add or replace. Omitting the member list updates only the
members with corresponding external filenamesin the current directory.

Updating replaces a member only when the date and time stamps on the
external file are newer than on the member.

NOTE. Theu option has the same effect both as a separate option and as
a modifier of the replace (r) option.

7

Examples

1. Thefollowing example placesdl . o files from the current working
directory into | i bo. a. Existing members are updated and new
members are added.

arc960 -u libo.a *.o0

2. Thefollowing example uses u as a modifier for the replace (r) option,
updating fi | e. o only if the external file is more recent than the
archived version:

arc960 -ru libx.a /newfiles/file.o

Related Topic
Replace

2-18

Archiver (arc960, gar960)

v: Verbose

Modifier: Printsthe
archiver progress

information
v
Discussion
For complete information about the archiver operation, specify v. The
verbose information is specific to the option you specify, as shown in
Table 2-3.

Table 2-3 Verbose Modifier Information Display
Control Screen Display Meaning
d (delete) d - name removes a member
m (move) m - name moves a member within the archive
r (replace) andu r - name replaces a member
(update) a - name adds a member
X (extract) X - name extracts a member into an external file
p (print) prints the member name and contents
t (toc) prints the archive table of contents

NOTE: name is the name of the processed archive member.

Example

The following example replaces existing membersin | i bx. a with the
corresponding filesin the current directory, placing new members before
filel. o. Asnew membersare added and existing members replaced, the
archiver generates appropriate messages.

arc960 -vrb filel.o libx.a *.0

2-19

i960® Processor Software Utilities User's Guide

2-20

On aWindows host, the output is:

r - filel.o
a-t.o

a- file2.0
a- file3.o
a- filed.o

V, v960: Version

Option: Displays the
archiver version number
and creation date

960

O
([

Discussion

To display asign-on message during archiving, use v. After displaying the
message, the archiver continues processing.

To display the message without archiving, use v960. Y ou heed not
provide any other input. After displaying the message, the archiver stops.

The message includes the version number of the archiver and the date and
time the archiver was created.

Example

The following command displays the archiver version information and
continues processing:

arc960 -V

The following is a sample message:

Intel 80960 Archiver n.n, Thu Cct 19 15:14:07 EDT 199n

Archiver (arc960, gar960)

X: Extract

Option: Extracts
archive membersto files

Discussion

To copy membersto externa filesin the current directory, usex. To
extract all members, list none on the command line. The contents of the
copied archive member are not affected.

The archiver overwrites files in the working directory with the same names
as the copied members. If no such files exist, the archiver creates them.
The extracted files retain the file attributes stored in the archive, including
the modification date and time. To retain the time stamp of when thefile
was recorded in the library, use the o option.

Example

The following example extracts all members of | i bs. a into the current
directory. The verbose (v) modifier displays the name of each member
extracted.

arc960 -xv libs.a

2-21

2 i960® Processor Software Utilities User's Guide

Z: Suppress Time Stamp

Option: Suppresses
time stamp in the
archive header

Discussion

To suppress the time stamp in the archive header, use the z option.

Example

arc960 -z libs.a

2-22

COFF/ELF/b.out Converter
(cof960/0bjcopy)

cof960 and objcopy convert header information in object filesto alow
greater portability between hosts. Note that cof960/objcopy does not
change the data portion of afile. The converter takes an input file and
creates an output file with one of these conversions:

big-endian byte order to little-endian or vice-versa.
e COFF to b.out format or vice-versa.

e« ELFtob.out or vice-versa.

e ELFto COFF or vice-versa.

Or you can instruct the converter to remove relocation and symbolic
information to reduce code size of debugged objects.

Changing the byte order may be necessary for symbolic debugging, and for
examination with common object format library (COFL) tools and other
utilities. In such cases, COFF object-file byte order may need to match the
host system’s byte order. For example, certain debuggers requireit, as do
the tools COFL and cvt960.

NOTE. The converter does not initialize the space between ELF sections.
Although this does not affect the validity of the ELF file, it can produce
unexpected differences between otherwise identical files. Use the
dumper/disassembler (gdmp960/dmp960) with the - moption to determine
the location of these gaps in an object file.

31

i960® Processor Software Utilities User's Guide

3-2

Invocation

Invoke the cof960/objcopy converter as:

(POr980 H o ion. . input [output]
tobj copy L~ %P e 1P P
cof 960 invokes the converter for backwards
compatibility with CTOOL S960 R3.5 and later.
obj copy invokes the converter for backwards
compatibility with GNU/960 R1.3 and later.
option isany option listed in Table 3-1.
i nput istheinput file.
out put names the output file. Without an output
filename specification, the converter overwrites
the input file.
Table 3-1 cof960 / objcopy Options
Option Effect
b generates big-endian output, regardless of the input byte order.
c copies the file rather than moving it.
C strips CCINFO from output.
Fbout specifies the output format, regardless of the input format.
Feoff - Fbout generates b.out-format output.
Felf « Fcoff generates COFF output.
+ Felf generates ELF output.
Omitting F leaves the format unchanged. Changing the file format removes the
relocation information and symbol table.
h generates an output byte order matching the host-system byte order, regardless of
the input byte order.
help displays help information and exits.

continued [J

COFF/ELF/b.out Converter (cof960/objcopy)

Table 3-1 cof960 / objcopy Options (continued)
Option Effect
J Compresses the symbol table, merges duplicate tags, and compresses the string

o T -

=

table (COFF files only).

generates little-endian output, regardless of the input byte order.
overwrites the input files with the converted output.

suppresses printing status information during conversion.

converts little-endian input to big-endian output. Using r with big-endian input
causes an error.

removes all relocation and symbol-table information. Do not use S when converting
a library or other relocatable files, as it renders the files useless.

displays progress information during the conversion (converter lists the action
taking place).

displays (on stdout) the converter version number and the date and time the
converter was created, then continues processing.

displays (on stdout) the converter version number and the date and time the
converter was created, then stops processing.

removes the local symbols generated by the gcc960 compiler.

uses Time Zero instead of the current time and date for the COFF output-file time
stamp. Time Zero is 4:00, 31 December, 1969.

Output File Specification

Y ou can direct the converted output either to overwrite the input or to

produce a different file:

» To put the converted output in another file, preserving the input file,
follow the input filename with the output filename in the invocation.
For example, the following puts the big-endian conversion of I fil e. o
intobfile. o:

cof 960 -b Ifile.o bfile.o

3-3

i960® Processor Software Utilities User's Guide

34

« Tooverwrite the input files, specify the p option. When converting the

file contents in place, you can provide multiple input files for each
converter invocation. Separate the input files with spaces. For
example, the following convertsfil el. o,file2.0,andfile3.o
from little-endian to big-endian:

cof 960 -bp filel.o file2.0 file3.0

COFF to IEEE-695
Converter (cvt960)

The COFF-to-1EEE converter (cvt960) converts filesin Common Object
File Format (COFF) to IEEE-695 format. The |[EEE-695 format conforms
to the IEEE-695 Object Module Format Specification, Revision 4.0,
Copyright 1987-1989, by Microtec Research Incorporated and Hewlett-
Packard. Note that cvt960 cannot trandate b.out or ELF format filesinto
|EEE-695 format.

cvt960 requires that the input COFF file provided for translation be in host-
endian orientation. Use objcopy/cof960 to trandlate the input file into host-
endian orientation prior to executing cvt960.

Invocation

To convert filesin common object file format (COFF) to |EEE-695 format,
invoke cvt960 with the following syntax:

cvt960 [-option]...

cvt 960 invokes the converter.

option isone or more of the options listed in Table 4-1.
% NOTE. To convert a file named a. out , putting the | EEE-695 format
& output in a. x, invoke the converter with no options.

4-1

i960® Processor Software Utilities User's Guide

4-2

Table 4-1 cvt960 Options

Option Effect

a converts files for use with the MRI Xray user interface (pre-X263 and earlier
versions).

Aarch specifies an 80960 architecture tag for the IEEE-695 output file. Valid arch
values are COREO, CORE1, CORE2, CORES3, SA, SB, KA, KB, CA, CF, JA,
JD, JF, JT, HA, HD, HT, RD, RP, RM, RN and VH. See Getting Started for a
description of the new COREO-CORES3 group architecture options.

c specifies emitting column zero for line entries rather than one.

h displays help information.

i input specifies an input COFF file. The default input filename is a.out.

o output names the IEEE-695 output file. The default output file is the input filename
with the extension replaced by .x. When the input filename has no suffix, the
converter appends .X.

s suppresses the IEEE-695 public and debug parts. The converted file contains
no line number, symbol table, or debug information.

\% displays converter version information and continues processing.

vo60 displays converter version information and stops processing.

w suppresses warning messages.

z writes constant time stamp (Time Zero) and command line to output file. Time

Zero is 4:00, 31 December, 1969.

Examples

1. Thefollowing convertsa. out toa. x:
cvt 960

2. Thefollowing displays the converter version information and
tranglates hpx. i n into hpx. x in/ e/ asm t est s/ cvt _960:

cvt960 -V -i /elasmtests/cvt_960/ hpx.in

3. Thefollowing translatesa. out into hpx. out , stripping the debug
information:

cvt960 -s -0 /el/asmtests/cvt_960/ hpx. out

COFF to |IEEE-695 Converter (cvt960)

Limitations

This section describes parts of the COFF, the converter, or the IEEE-695
format that can cause conversion problems.

Position-independent Code, Data, and Symbols

The converter trand ates position-independent code and data correctly, but
position-independent code symbols and position-independent data symbols
lose the flags that mark them as position-independent.

Archives and Relocatable Objects

Use the converter only on COFF absolute-executable load modules. The
converter does not trandate archives or rel ocatable objects.

Unreferenced Types

The converter does not produce type definitions for high-level types that
are not referenced. This omission helps to reduce the size of the

|EEE-695 module where the C #i ncl ude mechanism has produced alarge
number of unreferenced type definitions, such as structure tags.

Global Uninitialized Symbols

With |EEE-695, every symbol is owned by some source module. The
structure of the COFF symboal table, however, dictates that symbols for
global, uninitialized variables belong to no specific source module. In
order to translate COFF global variables, the converter produces a module
in. bss strictly for symbolsthat are not accounted for in any other module.
Thismoduleisnamed . gl obal _non_i nit. A single-module section is
produced for . gl obal _non_i ni t, which extends from the
lowest-addressed symbol in the module to the end of the. bss section.

4-3

i960® Processor Software Utilities User's Guide

4-4

Compilation/Assembly Information

COFF does not include source file path information, and the compiler and
assembler tools before V3.0 do not supply the time of compilation and
assembly for source modules. The converter does not supply this
information.

COFF Line Numbers

COFF does not provide column information for source coordinates and the
converter does not provide that information. Column numbersin the
|EEE-695 output module are 0.

The converter translates each COFF line-number record to a | EEE-695

ATN/ASN pair, possibly causing one-to-many mappings in the output

module numbers, as in the following examples:

¢ COFF source-line information provides the same code address for the
line of afunction block’s{ token and the first executable line of code.
Using the code fragment below, for example, the converter puts the
line containing { and the line containingi nt foo =1 (lines2 and 4) in
the COFF symbol table with the same code address.

1: mai n()

2: {

3.

4. int foo = 1;

» COFF source-line information provides multiple addresses for the
same source line under some conditions. For example, awhi | e loop
associates the source line of thewhi | e statement with the machine
address of the branch to the loop-condition test at the end of the loop.
The machine code associated with the loop-condition test produces an
additional line-number entry with the same row number as the branch.
These two line number groups are trandlated for the whi | e loop with
the same line number and different addresses.

COFF to |IEEE-695 Converter (cvt960) I

COFF Symbol Translation

The compiler prefixes most C language names with an underscore ()
when creating COFF symbols. When the converter finds a symbol with an
initial underscoreand a. fi |l e symbol endingin.c or. i, it treatsthe
symbol as a C name with the underscore prefix. The converter strips out
theinitial underscore and places the symbol in the B3 block corresponding
to that COFF module. The B3 block describes high-level debug
information.

COFF symbols that come from any source moduleswhose . fi | e symbol
doesnotendin.c or.i areconsidered assembly language symbols. The
converter leaves any initial underscores intact and places the symbolsin
the B10 block, which describes assembly-level debug information. The
symbols are given |EEE-695 assembl er-static attributes and built-in types.

IEEE-695 Built-in Types

Table 4-2 lists the trandlation of COFF symbols of scalar and pointer types
to |EEE-695 built-in types. The Valid in Public Part column indicates
types produced for symbols in the IEEE-695 public part.

4-5

i960® Processor Software Utilities User's Guide

4-6

Table 4-2

Mappings Between COFF and IEEE-695 Built-in Types

IEEE-695
Code

© 00 N o g0~ W N P O

I e e O o e
® N o U1~ WN R O

19-24
25
26-31

COFF Concept
T_NULL
T_VOID

T _CHAR
T_UCHAR
T_SHORT
T_USHORT
T_INT,T_LONG

T_UINT,T_ULONG

n/a

n/a
T_FLOAT
T_DOUBLE
T_LNGDBL
n/a

n/a
C_LABEL
n/a

n/a

n/a

n/a

n/a

Meaning
unknown type
void-return
8-bit signed
8-bit unsigned
16-bit signed
16-bit unsigned
32-bit signed
32-bit unsigned
64-bit signed
64-bit unsigned
32-bit float
64-bit float
extended float
128-bit float
quoted string
code address
stack push
stack push
stack push
alias for above
64-bit BCD float

reserved

Valid in
Public Part

yes

Notes

no
yes
no
no
yes
no
yes
no
no
yes
yes
yes
no
no
yes
no
no
no

no

no

continued [

COFF to |IEEE-695 Converter (cvt960)

Table 4-2 Mappings Between COFF and IEEE-695 Built-in Types (continued)

|IEEE-695 valid in

Code COFF Concept Meaning Public Part Notes
32 DT_PTR p.unknown type no

33 DT_PTR p.void-return no

34 DT_PTR p. 8-bit signed no

35 DT_PTR p. 8-hit unsigned no

36 DT_PTR p. 16-bit signed no

37 DT_PTR p. 16-bit unsigned no

38 DT_PTR p. 32-bit signed no

39 DT_PTR p. 32-bit unsigned no

40 n/a p. 64-bit signed no

41 n/a p. 64-bit unsigned no

42 DT_PTR p. 32-bit float no

43 DT_PTR p. 64-bit float no

44 DT_PTR p. extended float no

45 n/a p. 128-bit float no 1
46 n/a p. quoted string no

a7 DT_PTR p. code address no

48 n/a p. stack push no

49 n/a p. stack push no

50 n/a p. stack push no

51-56 n/a alias for above no

57 n/a 64-bit BCD float no 3
58-255 reserved

Notes:

1 Although ic960 allocates a 128-bit cell with base address to 2*forthe C "long double" type, the

actual datum is 12 bytes long (manipulated by load-and-store triple word instruction). Thus, the
ic960 long double type maps to IEEE-695 built-in type #12, even though its memory alignment
might suggest built-in type #13.

2 These types correspond to stack pushes. The converter does not produce them because the 1960
processor family does not have explicit push instructions.

The 1960 processor family has no BCD-float support.

i960® Processor Software Utilities User's Guide

IEEE-695 Converter Warning Messages

The warning messages appear on st der r . After awarning, the tranglation

completes, but the output can be unusable.

No public/debug info produced: no .file synbols in COFF

synbol table
The converter must find at least one. fi | e symbol in the COFF
symbol table to establish a starting point for translation. When no such
symbol isfound, the |EEE-695 public and debug parts are not included
in the output module.

COFF section id number is type COPY;synbol/data conflicts

possi bl e in output
The converter found a COPY section in the COFF file. The |IEEE-695
format has no direct analog of a CoPY section, so the conversion could
confuse the user.

COFF section id number is type DSECT; symbol conflicts

possi bl e in output
The converter issues this message because some linkages may produce
symbol tables where two or more symbols point to the same memory.
Some emulators cannot handle this, and reject loading such files. The
converter gives you thisinformation here to prevent your waiting until
an emulator failsto load the files.

Il'legal register value (nunber) at synbol index number
The value of the COFF symbol at the indicated index does not
represent an i960® processor register. The IEEE-695 translation
contains an invalid i960 processor register index.

COFF argunent synbol at index number is ignored;

addressing path too conplicated for | EEE-695
The converter cannot process any COFF symbol whose addressing
path is more complicated thaor.f set (regi ster). This limitation
only affects C function arguments that are allocated in the caller's
argument block.

COFF to |IEEE-695 Converter (cvt960)

One or nore COFF synbols (index nunber) have invalid tag
i ndex nunber

The converter encountered COFF symbols of atag type (st r uct,
uni on, or enum) with no reference to their COFF type information.
The IEEE-695 information for these symbols is not correct.

4-9

Coverage Analyzer (gcovoe0)

The gcov960 test coverage analysistool performs basic block execution
coverage analysis of instrumented programs.

To use gcov9e0, first compile your program with the gcc960 f pr of
instrumentation option, then execute the program with appropriate input
data. (For more information on profiling, see the iI960® Processor
Compiler User’'s Guidg Executing your instrumented program causes the
compilation system to update the program database and create a profile
datafile (def aul t. pf, by default). Y ou can then use the options described
in this chapter to create avariety of reports showing how your program
behaves with various inputs.

Invocation

Invoke the coverage analyzer using the syntax:

gcov960 [control]... [file [=npdule, ...]]1... [option]...
control isone of the controlslisted in Table 5-1.
file identifies a source file, from the profiled program

represented in the program database. Specifying
fi I e restricts the operation of gcov960 to the

file.
nmodul e identifies amodule within fi / e.
option isone or more of the options listed in Table 5-2.

51

1960 Processor Software Utilities User’s Guide

5-2

Table 5-1

If you supply the optional 7i I e [=npdul e, . . .] input dong withthe-r1
option, gcov960 reads the source and produces an annotated listing of the
source along with the coverage datain fi / e. cov. Inthe annotated source,
each statement within abasic block is prefixed with the number of times it
has been executed. Linesthat have not been executed are prefixed with
HHHHIHE

Note that in this chapter a basic block refers to a single entry, single exit
code region containing no branching mechanisms. The number of lines
marked with ######## may not equal the number of blocks listed in the
gcov9oe0 report.

gcov960 Controls

Control Argument Effect

¢ p
m
f

=)

produces program-level coverage report.

produces module- and program-level coverage report.

produces function-, module-, and program-level coverage report.
produces a source- and module-level coverage report.

produces the n most frequently executed lines (when n is positive) or
least frequently executed (when n is negative).

produces a call-graph listing of the program. The h argument is
optional; it attaches to the report an explanation of how to interpret the
call-graph listing.

n new_profile compares two profiles. The new profile is compared to the default or

the profile specified with the p or iprof option, and just-hit or just-
missed lines are reported. Multiple instances of this control and
argument are supported; The profiles specified are automatically
merged together.

ignores hits from functions whose profiles are of increasing accuracy
(decreasing levels of interpolation). nis 0..9. The default is Q9, which
ignores hits for all functions except those with perfect profiles. QO
ignores hits for any functions, even those with completely guessed
profiles.

Coverage Analyzer (gcovo60)

Table 5-1

gcov960 Controls (continued)

Control Argument

r I
h

Effect

produces annotated source listing.

produces the line numbers within the basic blocks that were hit. You
can also use the | option to specify the directories searched.

produces the line numbers within basic blocks that were missed. You
can use the | option to specify the directories searched.

Table 5-2

gcov960 Options

Option
C

h

I

p or iprof

Argument

search_dir
file

Effect

calculates the total number of execution counts in a profile.
prints help information.

adds directory to list that gcov960 searches for source files.
identifies profile to be used. Default is default.pf. Multiple

instances of this option and argument are supported. The profiles
specified are automatically merged together.

Ignores hits except from functions whose profiles are at least <n>
accurate. The valid range for <n> is 0-9. The default is -Q9, which
ignores profile information for functions that have had source code
changes since the profile was collected. -Q0 tells gcov960 to use a
profile even for functions with profile information that is completely
interpolated. A profile’s quality gradually drops as changes are
made to the code from which it was collected and interpolation is
done to make it useable by gcc960, ic960, and gcdm960.

suppresses display of version, copyright, profile, and program
database used.

truncates displayed names to keep them within column widths.
prints version and continues.

continued [J

5-3

1960 Processor Software Utilities User’s Guide

Table 5-2 gcov960 Options (continued)

Option Argument Effect
vo60 prints version and exits.
z pdb_dir identifies program database directory. Default is directory

identified by G960PDB (gcc960) or 1I960PDB (ic960). See the
Getting Started manual for more information on environment

variables.
% NOTE. Thereports produced by gcov960 may give misleading
‘ information about functions that are inlined. The reports may indicate

that the code of the inlined function has never been executed, or may show
execution counts that are unexpectedly low. This occurs because the
inlined code fragments are treated as part of the function they are inlined
into and not as part of the original function.

Examples

The following examples assume that you compile and execute the
following source file named conpare. c.
/* conpare.c */
#i ncl ude <stdi o. h>
mai n(argc, argv)

int argc;
char *argv[];
{
int nl, n2;
if (argc != 3)
{
printf("Usage: conpare nl n2\n");
exit(0);
}
nl atoi (argv[1]);

n2 = atoi(argv[2]);

Coverage Analyzer (gcovo60)

printf("Use integers larger that zero\n");
exit(0);

}
if (nl == n2)
printf("\n% equals %\n", nl, n2);

el se
{
if (nl1 < n2)
printf("\n% is less than %\ n", nl, n2);
el se
printf("\n% is greater than %\n", nl, n2);
}

}
To compile conpar e. ¢ use the command:
gcc960 -Fcoff -fprof -Z pdb -ACF -Tntycx conpare.c

The above command creates the directory pdb (if it doesn't exist already)
to store the program database information and generates an absolute
module named. out , which can be downloaded and executed on a
Cyclone board with a i960 CF processor module.

The following command creates the file containing the profile information
using mondb.

mondb -ser a.out 10 10

This command creates a file callgst aul t . pf . Once you have the

defaul t. pf file you can copy it to a file with a different name such as
defaul t. ol d. You can then use mondb again to create a new profile with
a different set of data, for example:

nmondb -ser a.out 10 20

5-5

1960 Processor Software Utilities User’s Guide

5-6

Example 1
¢ Thegcov960 invocation:
gcov960 -c -Z pdb
« produces the coverage report shown below.
Intel 80960 Coverage Anal yzer n.n.nnn
Copyright (C 1996 Intel Corporation. Al rights reserved.

Cover age Anal ysi s
Pr ogram Summary

No. No. Blocks No. Block

Bl ocks Hts M sses Cover age
13 7 6 53. 85%

Pr ogr am dat abase: /ffslaljoeltnp/pdb

Program profile: [ffsl/aljoeltnp/defaul t.pf

Example 2

e Thegcov960 invocation for an instrumented program conpar e. c:
gcov960 -rl -Z pdb

produces the output in file conpar e. cov shown below. The numbers on
the | eft are the execution count for the basic blocks associated with the
statement.

#i ncl ude <stdi o. h>

mai n(argc, argv)

int argc;
char *argv[];
1->{
int nl, n2,
1-> if (argc !'= 3)
{
HHHHHHER - > printf("Usage: conmpare nl n2\n");
Bt > exit(0);
}

Coverage Analyzer (gcovo60)

1-> nl = atoi(arv[1]);
1-> n2 = atoi(arv[2]);
111-> if ((nl <=0) || (n2 <=0))
{
HHHHH - > printf("Use integers |arger than zero\n");
HHHE- > exit(0);
}
1-> if (nl == n2)
1-> printf("\n% equals %\n", nl, n2);
el se
{
HtHHHE- > if (n1l < n2)
HHHAH AR - > printf("\n%l is less than %\ n", nl, n2);
el se
HHHHH AR - > printf("\n%l is greater than %\ n", nl, n2);
}
}
No. of Bl ocks: 13
Bl ocks Hit: 7
Bl ocks M ssed: 6
Sour ce Cover age: 53. 85%
Pr ogr am dat abase: /ffs/aljoeltnp/pdb
Program profile: [ffs/aljoeltnp/default.pf
Example 3

The gcov960 invocation to compare two profile files (def aul t . pf and
def aul t . ol d) created after running the instrumented program
conpare. c:

gcov960 -rIim-n default.pf -p default.old -Z pdb
e producesfile conpar e. cov containing the output shown below.
#i ncl ude <stdio. h>
mai n(argc, argv)
int argc;
char *argv[];

{

int nl, n2;

5-7

1960 Processor Software Utilities User’s Guide

5-8

if (argc !'= 3)

{
printf("Usage: conpare nl n2\n");
exit(0);

nl = atoi(argv[1]);

n2 = atoi(argv[2]);
if ((nl<=0)]| (n2<=0))

{
printf("Use integers |arger than zero\n");
exit(0);
}
if (nl == n2)
printf("\n% equals %\n", nl, n2);
el se
{
HHHH - > if (nl < n2)
HHHHHHE - > printf("\n% is less than %\ n", nl, n2);
el se
printf("\n%l is greater than %\ n", nl, n2);
}
}
Li nes Just M ssed: 2
No. of Bl ocks: 13
Bl ocks Hit: 9
Bl ocks M ssed: 4
Sour ce Cover age: 69. 23%
Pr ogr am dat abase: [ffs/alelvis/tnp/pdb
Program profile: /ffs/alelvis/tnp/default.old

O her programfile: [/ffs/alelvis/tnp/default.pf

Dumper/Disassembler
(dmp960, gdmp960)

The dumper/disassembler displays object or archive (library) filesin
COFF, ELF, and b.out formats.

It displays aobject file contents, including:

« file, section, and COFF optional headers

¢ line-number entries

* relocation entries

« symbol and string tables

« contents of the sections as assembly language

¢ contents of the sections as hexadecimal bytes, in little-endian byte
order

Invocation

Invoke the dumper as:

%gpngggoé [-option]... filenanes

dnp960 invokes the dumper for backwards compatibility
with CTOOL S960 Release 3.5 and later.

gdnmp960 invokes the dumper for backwards compatibility
with GNU/960 Release 2.0.1 and later.

option an option listed in Table 6-1. Invoking the

dumper without any options disassembles the
contents of all sections.

6-1

i960® Processor Software Utilities User's Guide

6-2

Table 6-1

fil enanes

one or more filenames, separated by spaces,
indicating files to be displayed. Y ou can specify
complete pathnames.

dmp960/gdmp960 Options

Option

a

A{SA|SB KA |
KB|CA|CF|JA|
JD|JF|JT | HA|
HD |HT |RD | RP |

RM | RN | VH |

COREOQ | COREL |
CORE2 | CORES3 |
ANY}

c
d

f
F function

Effect

disassembles all sections in an object file. Use this to
examine the raw DWARF information in a file.

Specifies architecture for which you are disassembling.
This options does not currently affect disassembly.

displays the string table.

disassembles all sections loaded into target memory.
Unless otherwise specified, text sections appear as
assembly language, and data sections appear as
hexadecimal bytes. When no options are specified
when invoking the dumper, -d is assumed as the default
option.

disassembles sections as hexadecimal bytes, regardless
of the section type. The physical address of every fourth
word appears at the beginning of each line.

applies all command line options to each member of an
archive file.

displays the file headers.
disassembles the specified COFF or ELF function.

continued [J

Dumper/Disassembl er (dmp960, gdmp960)

Table 6-1

dmp960/gdmp960 Options (continued)

Option

glarg]...

O filename

Effect

dumps one or more .debug_* sections. The default
argument is i (.debug_info). Use the following
arguments to specify a different section, or multiple
sections:

dump .debug_info (default argument)
dump .debug_line

dump .debug_frame

dump .debug_pubnames

dump .debug_aranges

dump .debug_macinfo

dump all .debug_* sections

>3 T T T

displays the section headers.
displays help information and exits.
displays the COFF optional header.

displays the line numbers.
displays the memory map (section layout) of the file.

displays the requested information for only the specified
section.

displays the requested information for only the specified
file within an archive.

displays the disassembled addresses in octal. The
default is hex.

suppresses all the header displays, producing a
parseable output.

queries the file and displays its type.

displays the relocation information.

used with d, puts symbols in the disassembly in place of
addresses.

continued [

6-3

i960® Processor Software Utilities User's Guide

6-4

Table 6-1

dmp960/gdmp960 Options (continued)

Option
S

v960

Effect

Instructs the disassembler to output symbol labels rather
their values for any symbols for which you have
specified the absolute address. This option works in
conjunction with the -s (lowercase) option, which
instructs the disassembler to perform symbolic
disassembly.

displays the object file symbol-table entries, or an
archive’s symbol list.

displays the disassembled section as assembly
language, regardless of the section type.

displays the dumper version and creation date, and
continues processing.

displays the dumper version and creation date, and
stops processing.

is ignored unless used with -t. Displays the symbol-
table entries as hexadecimal nhumbers instead of a
symbolic translation of debug information. By default,
the dumper produces symbolic information.

suppresses the translation of zeros into .word directives
for text-type disassembly.

Dumper/Disassembl er (dmp960, gdmp960)

Dumping Absolute Symbols

The - s option instructs the disassembler to output symbol 1abels rather

than their values for any symbols for which you've specified the absolute
address. This option works in conjunction with tkeglowercase) option,
which instructs the disassembler to perform symbolic disassembly. For
example, with an object file created with the following instructions:

. gl obl procl

. set procl, Oxc
cal | x procl

cal | x Oxc

addi procl, r5,r6

If you use the following gdmp960 command line:
gdnp960 t2.0 -s
you would see the output:

Section '.text’:

0: 8600000c cal | x Oxc
4: 8600000c cal | x Oxc
8: 5931488c addi 12,r5,r6

Notice that in the second lingr,oc1 from the source code is converted to
Oxc, the user-specified address foobc1l.

Adding the- s option to the command line instructs the disassembler to
display the symbol name instead of its address. For example, this command
line:

gdnp960 t2.0 -s -S
produces the following output:

Section '.text’:

0: 8600000c cal | x procl
4: 8600000c cal I x procl
8: 5931488c addi 12,r5,r6

Notice that in the botlral | x statementgr oc1 now appears instead of
Oxc. Using the S option causes the disassembler to display the symbol
name for all calls to that address.

6-5

i960® Processor Software Utilities User's Guide

L)

Examples

NOTE. This option was supported in the rev. 5.0 disassembler asthe
undocumented - A switch. This option has been renamed - S.

The examples that follow show how you can extract information from
object fileswith dmp960. Thefilet . ¢ isasimple C program that isfirst
compiled then assembl ed.

i nt arr[12] = { 3, 4 };
static int i ndex;
mai n()
{
int tenpt = func(arr[index]);
}
ic960 -S -gt.c
cat t.s
Command line (ic960): ic960 -S -g t.c # Conmand |ine (ccl):
[ffs/pl/dev/sund/lib/ccl.960 -ic960 -ffancy-errors -sinfo
/tnp/ica02371.sin -fno-builtin -quiet -Fcoff -nkb -nic3.0-conpat
-fsigned -char -wl -bnane_tnp /tnp/ica02371.btm-00 -g -dcnd

H*

"ic960 -S -g t.c" -dunpbase t /tnp/ica02371.i -ot.s .file "t.
ic_nane_rules.:

gcc2_conpil ed. :

___gnu_conpiled_c:

. gl obl _arr
.data

.align 4
_arr:

.word 3
.word 4

. Space 40

. text

.align 4

. def _main; .val _main; .scl 2; .type 0x44;
. endef

. gl obl _main

Function 'main’

c"

Dumper/Disassembl er (dmp960, gdmp960)

Registers used: g0 g4 g5 g6 g7 914 fp r4*

_main:

. def . bf; .val . .scl 101; .line 5;
.In 1
addo 16, sp, sp

#Pr ol ogue stats:

Total Franme Size: 16 bytes

Local Variable Size: 16 bytes

Register Save Size: 0 regs, 0 bytes #End Prol ogue#

nmov gl4,r4
. def _tenmp; .val 64; . scl 1; .type 0x4;
def
.In 2
Id _index, g4
Id _arr[g4*4], g0
callj _func
nmv g0, g4
nmv g4, g5
st g5, 64(fp)
.In 3
#EPI LOGUE:
ret
. def .ef; .val . . scl 101; .line 3;
. def _main; .val . .scl -1; . endef
. def _i ndex; .val _i ndex; . scl 3; .type
. endef
. bss _index, 4,2
. def _arr; .val _arr; .scl 2; .dim 12;
48; .type 0x64; . endef

asnP60 t.s -0 -t.o

. endef

.en

. endef

0x4;

.size

6-7

i960® Processor Software Utilities User's Guide

dnmp960 t. o

Section '.text':

0: 59084810 addo 16, sp, sp

4: 5c20161e nmov gl r4

8: 90a03000 00000060 Id 0x60, g4

10: 90803914 00000030 Id 0x30[g4*4], g0
18: 09ffffe8 cal | 0x0

1c: 5ca01610 nmv g0, g4

20: 5ca81614 nmv g4, g5

24: 92af e040 st g5, 0x40(f p)

28: 0a000000 ret

Section '.data’
30: 03000000 04000000 00000000 00000000
40: 00000000 00000000 00000000 00000000
50: 00000000 00000000 00000000 00000000

Here is the same example, but with symbolic disassembly enabled. Note
how much more closely the disassembly resembles the assembly source
code.
dnp960 -s t.o
Section '.text’:
_mai n:

0: 59084810 addo 16, sp, sp

4. 5c2016le nmov gld, r4

8: 90a03000 00000054 |d _index, g4
10: 90803914 00000024 Id _arr[g4*4], g0
18: 09ffffe8 call _func
1c: 9287e040 st g0, 0x40(f p)

20: 0a000000 ret

Section '.data’:
24: 03000000 04000000 00000000 00000000
34: 00000000 00000000 00000000 00000000
44: 00000000 00000000 00000000 00000000

Dumper/Disassembl er (dmp960, gdmp960)

[I ndex]
[I ndex]
[1 ndex]
[1 ndex]
[1 ndex]
[1 ndex]
[I ndex]
[12]

[17]

[18]

Here are the relocations that are passed to the linker.
dnmp960 -r t.o

*** RELOCATI ON | NFORMATI ON ***
Section '.text’:

Vaddr Type Nane
0x0000000c RELLONG. bss
0x00000014 RELLONG. dat a
0x00000018 | PRVED _f unc
0x00000018 OPTCALL_func

Section '.data’:
Section '.bss’:

And hereis part of the COFF symbol table. Note the use of the - n option
to make the dumper display only symbols from the . bss section.
dnmp960 t.o -t -n .bss

*+% SYMBOL TABLE | NFORMATI ON ***

mL Nanme/ Off set Value Scnum Flags Type Sclass Nunmaux Name

a0
al
a2
a3
a4
ab
mlL
mlL
a3

Wor di Short1 Short2 Short3 Short4 Short5 Short6 Tv

Fnanme
Tagndx Fsi ze Lnnoptr Endndx Tvndx
Scnl en Nreloc N inno

Tagndx Lnno Size Dm0] Dnfl] D nf2] Dn3]
Identification String Date/Tinme
_i ndex 0x00000060 3 0x1000 i nt static 0 _index
. bss 0x00000060 3 0x1200 static 1 .bss
0x00000004 0x0000 0x0000

6-9

i960® Processor Software Utilities User's Guide

6-10

Hereis part of the b.out symbol table. The S column identifies the section,
asin gnm960 output. The O column indicates whether each symbol is
ordinary (0), aleaf entry point (L), or a system procedure entry point (S).

gcc960 -c -Fbout t.c;

*** BOUT SYMBOL TABLE ***

0x00000000
0x00000000
0x00000030
0x00000000

0x00000000
0x00000000
0x00000030
0x00000060

I
I
I
I
0x00000060 |
I
I
I
I

oo T cCco-4H4g~—~ —

Synbol

gdnp960 -t t.o

Narme

gcc2_conpi | ed.

___gnu_conpiled_c

_arr
_main

_func
. text
.data
. bss

|
|
|
|
| _index
|
|
|
|

Hereis part of the ELF symbol table. For more information on ELF
symbol tables, refer to the 80960 Embedded Application Binary Interface
(ABI) Specification.

gcc960 -c -Felf t.c

gdnp960 -t t.o

I ndex Val ue

©Co~NOoOOUOM~WNEO

0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000

10 0x00000000
11 0x00000000
12 0x00000000
13 0x00000000
14 0x00000000

S

[eNeoNoNoNeoNoNoNoNololNoNoNolNoNol

ze
LOCAL
LOCAL
LOCAL
LOCAL
LOCAL
LOCAL
LOCAL
LOCAL
LOCAL
LOCAL
LOCAL
LOCAL
GLOBAL
GLOBAL
GLOBAL

Bi ndi ng
NONE
SECTI ON
SECTI ON
SECTI ON
SECTI ON
SECTI ON
SECTI ON
SECTI ON
FI LE
NONE
NONE
NONE
NONE
NONE
NONE

Type
UNDEFI NED
.text
.data

. bss
.shstrtab
.strtab
.synt ab
.rel.text
ABSOLUTE
.text
.text

. bss
.data
.text
UNDEFI NED

Section

0x0
0x0
0x0
0x0
0x0
0x0
0x0
0x0
0x0
0x0
0x0
0x0
0x0
0x0
0x0

O h Nane

. text

.data

. bss
.shstrtab
.strtab

.synt ab
.rel.text

t.c
gcc2_conpi l ed
___gnu_conpiled_c
_i ndex

_arr

_main

_func

Dumper/Disassembl er (dmp960, gdmp960)

The last example shows the dumper’s display of the COFF section headers:
dnmp960 t.o -h
*** SECTI ON HEADERS ***

Nanme Paddr Vaddr Scnptr Rel ptr Lnnoptr
Align Si ze Nr el oc Nl nno Fl ags
.text 0x00000000 0x00000000 0x00000098 0x000000f 4 0x00000124
0x00000010 0x0000002c 4 4 REG TEXT
.data 0x00000030 0x00000030 0x000000c4 0x00000000 0x00000000
0x00000010 0x00000030 0 0 REG, DATA
. bss 0x00000060 0x00000060 0x00000000 0x00000000 0x00000000
0x00000010 0x00000004 0 0 REG BSS

Archive Support

With release 5.1 and later, gdmp960 supports dumping of archive files and

archive file members. Previous versions of the dumper only worked with

object files. Archive support alows you to dump:

e al members of an archive

e oneor more object fileswithin an archive

« information on the structure of an archive (e.g., the archive symbol
list)

Thetable below lists the options that allow archive support:

Option Description
-e! applies all options on the command line (e.g., - r,
- f) to each member of an archive.
-m displays a map of the archive contents. See the first

example later in this section.

-Ofil enane' applies all command line options to the named

archive member file only.
-p suppresses headers.

-q queries the archive file and displays its object
module format and host byte order.

-t displays the archive symbol list.

! Indicates a new dumper option.

6-11

i960® Processor Software Utilities User's Guide

6-12

Displaying Archive Structure Information

The examples that follow show an archivefile |'i b. a that contains the
object filesa. o, b. 0, and c. o, in that order.

Thisfirst set of examples show how the dumper can display information on
the structure of an archivefile using the- g, - m and -t options.

This example demonstrates the behavior of the dumper when querying an
archivefilefor its type. The command:

gdnp960 -q lib.a

produces the output:
File: lib.a
OVF: el f archive

Host Byte Order: bi g
Target Byte Order: unknown

In the next example, the dumper maps the internal structure of an archive
file. The command:

gdnp960 -mlib. a

produces the following output:

HEX DEC oCT
e +0 0 0
| Magic String |
I 0x8 (8) I
R + 8 10
[Synmbol List HDR |
| 0x3c (60) |
o eeiaao + 44 68 104
[Symbol Li st |
[0x64 (100) |
R + a8 168 250
[a. o HDR |
| 0x3c (60) |
oo + ed 228 344
| a.o |
[0x2934 (10548) |
R + 2al8 10776 25030
[b.o HDR |
| 0x3c (60) |

Dumper/Disassembl er (dmp960, gdmp960)

b.o
| 0x253c (9532)

c.o0 HDR
[0x3c (60)

c.0
| 0x7b74 (31604)

| END OF FILE
| 0x0 (0)

10836

20368

20428

52032

52032

25124

47620

47714

145500

145500

The -t option of the dumper permits dumping of the archive symbol list
information. For example, the command:

gdnp960 -t lib.a
produces the output:

Name

_dwarf_init
_dwarf _tag

__dw build_a die
__dw build_tree
_dw build_cu_list

O f set
168

10776
20368
20368
20368

Fi | enane
a.o

b
C.
c
c

o O O O

6-13

i960® Processor Software Utilities User's Guide

6-14

Dumping the Contents of Archive Members

The dumper lets you disassemble or display information about afile within
an archive by using the - e and - O options in combination with other
command line switches. In the example below, the - e option applies all
command line options to each member of an archive:

gdnp960 -q -e lib.a

a. o:
File: a.o
OVF: el f

Host Byte Order: big
Target Byte Order: little

b. o:
File: b.o
OVF: el f

Host Byte Order: big
Target Byte Order: little

c.o:
File: c.o
OVF: el f

Host Byte Order: big
Target Byte Order: little

Dumper/Disassembl er (dmp960, gdmp960)

The example below shows how the - O option lets you apply all command
line options to the named abject file only. The command:

gdnp960 -q -Ca.o -Cc.o lib.a

produces the following output:

a. o:
File: a.o
OVF: el f

Host Byte Order: bi g
Target Byte Order: little

c.o0:
File: c.o
OVF: el f

Host Byte Order: bi g
Target Byte Order: little

6-15

Linker

(Ink960, gld960)

Overview

The linker lets you combine unlinked or partially linked object files and
libraries into programs for debugging or execution on any i960®
processor. Linking can include:

« configuring a program for the target memory, including the addresses
and section combinations

« searching libraries to resolve external references

e adding, preserving, or removing symbolic debugging information

» defining or redefining global symbols

e changingcal Ij andcal | j x to branch-and-link or system calls

» patching all relocatable instructions, data and debug information (in
ELF/DWARF)

Though you can specify most of the linker options to perform these
functions on the command line, most users use a combination of command
line options and a linker directive file to provide input to the linker.
CTOOLS provides a number of linker directive ¢) files in the

[$GO60BASE | $1 960BASE]\ | i b directory. Typically, users store most
commands for allocating memory blocks and configuring memory in the
linker directive file. They then use the command line to invoke the linker,
specify the object files to be linked, specify the linker directive file, and
include any command line options needed to add to or override the settings
in the linker directive file.

7-1

i960® Processor Software Utilities User's Guide

7-2

This chapter focuses on teaching you how to use the linker by providing
the following:

¢ Some basic information about how the linker allocates memory blocks
and sections.

» A samplelinker directive file that you can edit to match the
reguirements of your target execution environment.

¢ Instructions on how to invoke the linker, specify your linker directive
file, object files, and other command line options.

e Sample command lines using additional linker features such as
cal Ij /cal | j x link time optimization that you may want to use in your
software development.

* A complete reference of al linker command line options.

Understanding Memory Blocks and Sections

With the linker, you can specify the portions of i960® processor’s address
space are available and where within that space the sections of your
program will be located. Once you have defined configured memory, all
other areas in the address space are left unconfigured, and are unavailable
for linking.

A section is the smallest relocatable unit of an object file. The linker
supports COFF, b.out, and ELF object module formats. A b.out-format
program contains exactly three standard sections:

.text is the standard text-type section, containing
instructions and by default starting at addiess

.data is the standard data-type section, containing
initialized data and by default follows ext .

. bss (block started by symbol) is a unique section,
containing uninitialized data and by default
follows . dat a.

Linker (Ink960, gld960)

A COFF or ELF program contains at least the three standard sections
(containing up to 65535 lines or relocation entries each) COFF section
names are restricted to eight or fewer characters; ELF section names can be
any length. For information on the COFF file format see Appendix C. For
more information on the ELF format, see the 80960 Embedded Application
Interface Specification (Intel order number 631999).

The following example includes two global declarations and an
assignment. The translated assignment code isstored in . t ext , thei
variablein . dat a, and the abc variablein . bss, as shown in Figure 7-1.

i nt abc[200]; /* in the .bss section, because abc is

not initialized in the .data */
int i=100 /* section because i is initialized */
int f() { */
abc[i] = 0; /* instructions are placed */
} /* in the .text section */

Figure 7-1 C Program Storage

Contents Memory Section
/\/

Instruction abcli]=0; text

Variable i 100 .data

Value Assigned

Variable abc abc[200] .bss
No Value Assigned

-

0OSD312

7-3

i960® Processor Software Utilities User's Guide

7-4

Y ou can define and link the sectionsin any order. In your assembly source
text and linker directive files, you can create and name additional text-type,
data-type and BSS-type sections for COFF and ELF programs. Y ou can

al so specify section and global-symbol addresses and overlap or suppress
some sections.

ELF/DWARF Sections

EL F/DWAREF sections are placed in non-allocated sections. The linker
concatenates and rel ocates these sections, but allocates no memory for
them. These sections are all allocated to memory address 0. Thisincludes,
among other sections, . debug_i nf o and . debug_abbr ev. For more
information on the ELF format, see the 80960 Embedded Application
Interface Specification (Intel order number 631999).

Named BSS Sections

Named Block Started by Symbol (BSS) sections are supported by the
linker. When the linker detects the symbol

___clear_nanmed_bss_secti ons inthelinkage, the linker generates code
to resolve this symbol. By default, the code is composed of ar et
instruction only. However, when the linker detects any number of named
bss sectionsin its output, it generates code to clear the sections and places
thiscodeinthe _ cl ear _named_bss_secti ons code.

Working with Linker Directive Files

The sample linker directive file below is for the Cyclone i960® Cx
processor-based evaluation board. By default, the installation program
places this file in:

[$3260BASE | $1 960BASE]\ | i b\ cycx. 1d

The commands under tiveMORY directive define the areas of memory that
are available and the type of memory that resides there. This platform has
two memory blocks defined: a DRAM region that begins at address
0xA0008000 and isox1ff8000 bytes in length, and an SRAM region that

Linker (Ink960, gld960)

begins at address 0xA0000100 and is 0x300 byteslong. Notice that the
DRAM address range alows room for the RAM space required by the on-
board monitor.

The commands in SECTI ONS specify where the linker places the different
program sections in memory.

MEMORY
{
dram : org = 0xA0008000, |en = 0xiff8000 /* 32M | ess nmonitor */
isram: org = 0x00000100, |en = 0x300
}
SECTI ONS
{
. text
{
} >dram
.data :
{
} >dram
.bss :
{
} >dram

/* Arithmetic controls |ocation when using floating point library. */

SFP_AC :
{

fpem CA_AC = .;
} >isram

}

/* Bounds of heap: */
/* The heap may be placed in a separate nmenory region, if desired. */

_heap_si ze = 0x20000
_heap_base = (_end + Oxf) & ~Oxf;
_heap_end = _heap_base + _heap_size - 1,

/* _stackbase marks base of user stack */

/* stack is allocated follow ng the heap. */

/* The stack nay be based in a separate nenory region, if desired. */
_stackbase = (_heap_end + 0x10) & ~O0xOf;

STARTUP ("crt960*")
HLL ()

SYSLIB ("1i brm*")
SYSLIB ("libll*")
FLOAT

7-5

i960® Processor Software Utilities User's Guide

7-6

The remaining options specify the floating point and other libraries used.
_heap_si ze, _heap_base, _heap_end, and _st ackbase are global
symbols that define the heap and stack. For more information on the linker
directives used in this sample file, see Appendix A.

Linker Invocation

Once you have set up your linker directive file, you are ready to link your
object modules. To run the linker, use the syntax:

0 nk9eoU

Egl d960% [-options] filenanes

I nk960 invokes the linker, providing backwards
compatibility with CTOOL S960 Release 3.5 or
later.

gl d960 invokes the linker, providing backwards
compatibility with GNU/960 Release 2.2 or |ater.

opt i ons is one or more of the optionslisted in Table 7-1.

fil enanes isone or more object, library, or linker-directive

filenames.

For example, to link thefilesfi |l el. o, fil e2. o using the linker directives
incycx. | d, enter the command:

I nk960 filel.o file2.0 cycx.Ild

The linker provides many options that et you customize the linking
process. Table 7-1 lists these options.

Linker (Ink960, gld960)

Table 7-1 Linker Options
Name Option Effect Default Action
Architecture A{SA|SB|KA| specifies architecture. The uses the KB libraries.
KB | CA|CF| COREO- 3 options let you
JA|JD|JF|JT| generate code thatis
HA | HD | HT | compatible with a group of
RD | RP | RM | processors. The types of
RN | VH | i960® processors supported
COREQO | by each CORE switch are:
COREL1 | COREO Jx, Hx, Rx, VH*
88252 l} CORE1 All 80960
architectures, VH*
CORE2 JX, HX, Rx, VH*
CORE3 Cx, JX, Hx, VH*

* Except for Big-Endian mode, which is unsupported in VH.

Section start Bsection addr assigns section addresses.

address T {bss | data |

text} addr
Startup C suppresses any STARTUP
alternative directive.
Circular c searches libraries circularly.
search

Inhibit CAVE D
compression

prevents the linker from

compressing CAVE sections.
dc
dp

Define
common
symbol space

reserves space for common
symbols, with the same effect
as a FORCE_
COMMON_ALLOCATION
directive (see Appendix A).
Useful only when combined
with -r.

locates the sections
consecutively in the
default sequence.

uses the startup routine
specified with STARTUP
in the directive file.

searches libraries once.
linker compresses CAVE

sections.

does not reserves space
for common symbols.

continued [

77

i960® Processor Software Utilities User's Guide

Table 7-1

Linker Options (continued)

Name Option

Define symbol defsym name =

expr

Entry point esymbol

Format Fcoff
Fbout
Felf

Fill fvalue

Big-endian G

target

Decision gcdm
maker

Sort common H
symbols

Help h
Compress J

Library search Ldir
path

7-8

Effect

defines an absolute symbol.

defines the primary entry
point.

selects COFF, b.out, or ELF
as the output format.

initializes the gaps within a
section.

specifies that input files and
output files are for a big-
endian target. Valid only for
COFF or ELF files.

invokes gcdm960 optimization

decision maker.

sorts common symbols by
size.

prints help and terminates.

merges duplicated tags, and
compresses string table.
(COFF only).

adds a directory to the library

and directive-file search path.

Default Action

uses the beginning of
.text as the entry point.

defaults to b.out for
gld960 and COFF for
Ink960.

initializes the memory
between sections to 0.

little-endian target files.

does not invoke
gcdom960.

does not sort common
symbols.

uses no compression.

uses a search path
determined by the output
format and invocation
name.

continued [

Linker (Ink960, gld960)

Table 7-1

Linker Options (continued)

Name Option

Library input labbr

Memory map m

Name map file Nfile

Noinhibit n
output

Optimization Ob

inhibit Os
Output ofilename
filename

Profiling P

Position p{b|c|d}
independence

Read symbols Rfilename
only

Relocation r

Effect

specifies a library-filename
abbreviation.

writes a memory map to
stdout.

places memory map in file.
Useful only with -m.

produces an output file
regardless of errors.

inhibits the branch-and-link or
system-call optimizations.

names the output file.

adds profiling initialization
code. This option is useful
only when combined with -r.

marks the output as position-
independent (PIC/PID),
issuing a warning for non-
PIC/PID input. Uses libraries
with PIC (-pc), PID (-pd) or
both (-pb).

includes only the symbols
from the specified object file.

retains the relocation entries
in the output file.

Default Action

takes no action.

generates no memory
map.

sends memory map (if
generated) to stdout.

for most errors,
suppresses the output
file.

optimizes the callj and
calljx pseudo-instructions.

produces a.out for COFF
output, b.out for b.out-
format output, and e.out
for ELF format output.

adds no profiling
instrumentation.

does not mark output as
position-independent.

includes the entire file.

removes the relocation
entries.

continued [J

7-9

i960® Processor Software Utilities User's Guide

7-10

Table 7-1 Linker Options (continued)
Name Option Effect Default Action
Strip S;s -S removes only the debug retains the symbolic

Section start
address

Target

Suppress
multiple
definition
symbol
warnings

Unresolved
symbol

Version

Verbose

Version; stop

Warnings

Bsection addr
T {bss | data |
text} addr

Tfilename

usymbol

v960

information from the output
file. -s removes all symbolic
information from the output
file.

assigns section addresses.

uses the full search path for
directive filename, with the
same effect as a TARGET
directive.

suppress warnings of multiple
symbol definitions, even if
they differ in size.

puts an unresolved symbol in
the symbol table.

displays linker version
information.

displays linker progress.

displays the linker version
information and stops linking.

suppresses warnings except
symbol table warnings.

information.

locates the sections
consecutively in the
default sequence.

searches only the current
directory.

displays all warnings.

suppress warnings of
multiple symbol
definitions even if they
differ in size. No
unresolved symbols
added to file.

displays no version
information.

displays no progress
information.

displays no version
information and stops
linking.

displays all warnings.

continued [J

Linker (Ink960, gld960)

Table 7-1 Linker Options (continued)

Compress X removes the local symbols retains local symbols.
beginning with a dot (.) or L.

Compress X removes the local symbols. retains local symbols.

Trace symbol y sym traces a symbol, indicating does not trace symbols.

Program
database

Time stamp
suppression

each file where it appears, its
type, and whether the file
defines or references it.

Z pdb_dir specifies location of program linker uses location
database. defined with variable
$G960PDB if defined.

z puts Time Zero in the output uses current time stamp.
time stamp.

Specifying Object Files

When you specify the input-object and library files on the command line or

in the directive files, provide the full object filenames, with the filename

extensions. The linker processes the input object and library filesin the

following order:

1. afile designated with the STARTUP directive (the C option suppresses
the STARTUP directive).

2. theobject filesand libraries listed individualy in the invocation, in the
order appearing on the command line.

3. theobject filesand libraries listed individually in the linker-directive
files, in the order encountered.

4. thelibrarieslisted with the HLL directive.

5. thelibrarieslisted with the SYSLI B directive.

7-11

i960® Processor Software Utilities User's Guide

7-12

Specifying Libraries

To resolve alibrary reference, list the library after al object files
containing the reference. Only required library members are linked. The
libraries are opened and searched once (unless you use the - ¢ option).
Specify alibrary file:

e with no option, using the full filename with its extension.

» withthel option and a standard library-filename abbreviation, as
described in the Library Naming Conventions and Search Paths
section on page 7-21.

« withtheHLL directive, for the standard high-level support libraries.

« withthe SYsLI B directive, for the libraries (such as low-level support
libraries) to be linked last.

The following examplelinksthefil el. o andfi |l e2. o object files. The
user-defined library 1'i bu. a resolves referencesinfil el. o. Any
unresolved referencesinfi | e2. o that could be resolved in | i bu. a cause
thelink to fail.

| nk960 filel.o -lu file2.0

Using the ¢ option to perform acircular library search resolves al symbols.

NOTE. The linker searches library names and locations according to the
new library installation convention. You must upgrade library
installations older than release 5.0.

Specifying Linker-directive Files

A linker-directive file can contain input object and library filenames,

directives, options, and other directive filenames.

« Toredtrict the directive-file search path to the current directory,
specify the filename a one on the command line or with | NCLUDE in
another directive file with a restricted search path.

e Tousethefull search path, use the T option or the TARGET directive.

I NCLUDE directivesin afileincluded with T or TARGET aso use the full
search path.

Linker (Ink960, gld960)

Thefollowing examplelinksthefil el. o andfil e2. o object files. The
object filesand thel nk12. | d directive file arein the current directory.
Instructions and datafromfi | el1. o are given lower addresses,
respectively, than instructions and datafromfi | e2. o, unless otherwise
specified in the directivefile.

| nk960 filel.o file2.0 Inkl2.1d

For more information on linker directive files, see Appendix A.

Naming the Output File

Unless you specify otherwise, the output file is named:

a. out for COFF output
b. out for b.out-format output
e. out for ELF output

The linker overwrites existing files with the default output names. To
preserve an existing a. out , b. out or e. out file, usethe o option or the
OUTPUT directive to specify an output filename.

Incremental Linking

Y ou can use the output of the linker asinput to subsequent linker sessions.
To generate relocatable linked files for such incremental linking, invoke
the linker with the - r option.

Linking a non-relocatable input file generates a warning message. For
successful linking, non-rel ocatable input files must:

» haveno unresolved external references

* belocated at the same address asin previous linker invocations

7-13

; i960® Processor Software Utilities User's Guide

Object Module Format Compatibilities

Y ou can link b.out-format, COFF or ELF object files and libraries, in any
combination. To determine afile format, the linker examines the first two
bytes of the file. An unrecognized value indicates alinker-directivefile.

Thisfeature is useful when using third-party archives with the Intel-
supplied runtime libraries and your application code. The runtime libraries
are shipped in ELF only (effective with CTOOL S R5.0 and later). Each
archive can have a different Object Module Format (OMF), and the linkage
still completes without error.

When the linker generates a different output format than the input, the
linker does not copy the debug information from the input file to the output
file. For example, if you include ab.out OMF file in alinkage where the
output file OMF is COFF, the linker does not copy any of the debug
information from the b.out file to the output COFF file. Ideally, you should
use one OMF consistently.

However, the following symbol information is translated and incorporated
into the output OMF file:

e Leaf procedures

e System Procedures (sysprocs)

e Common (global uninitialized variables)

e Locas (statics) in any section (typicaly . t ext, . dat a, Or . bss)

e Globalsinany section

e Absolutes

The linker ignores any other type of symbol when the output OMF is

different from the input, including:

e Typelnformation (e.g., X is a structure containing elementsy and 2).

* Linelnformation (e.g., function x, comes from file x. ¢, and ranges
from lines 123-456. Line 235 isat ip 0x12345678).

¢ Weak Symbols. ELF supports athird granularity of symbol type.
None of the other OMFs supports it.

7-14

Linker (Ink960, gld960) ;

Some OMFs are not as rich as others and therefore cannot accommodate

the features of other OMFs. Some examples follow:

1. Sections. The b.out OMF accommodatesonly . t ext , . dat a, and
. bss sections. If you create a b.out output file and attempt to use the
linker to create a section with any other name, the linker terminates
with an error. Thereisaworkaround for thisin the normal linker
directive language. Suppose you have an ELF filecalled ELF_fil e. o
with asection called & her _code_secti on. You can use the
following linker directives to include the contents of this section in the
.text section of the b.out output file:
SECTI ONS {

text oo {
elf_file.o(Qher_code_section)

}

Also, COFF accommodates only sections with names that are up to
eight characters long, whereas ELF can have arbitrary length section
names. When incorporating an ELF section into COFF output, the
linker shortens the name to eight characters.

2. Relocation types. b.out does not support ELF'SR_960_SUB relocation
type. If you try to create arelinkable output file with one of these
relocationsin it, and the output OMF is b.out or COFF, an error
occurs. Note, however, that not making arelinkable file does not
create aproblem. The linker relocates it, and throws the relocation
directives away.

3. System procedure (sysproc) indices. The b.out OMF accommodates
only system procedure indices that are greater than zero and less than
254. If you havea. sysproc symbol in a COFF or ELF symbol table
whose system procedure index value exceeds the bounds that b.out
supports, and you attempt to include thisfile in ab.out linkage, an
error occurs.

7-15

i960® Processor Software Utilities User's Guide

7-16

Note that when a. | eaf pr oc crosses from ELF or COFF into b.out, the
leaf entry point is produced from the call symbol. For example:

.leafproc x, LO
X:
| da 0, g0
LO:
ret
$ gas960e t.s
$ gl d960 -r t.o -Fbout -o t.bout.o
$ gnnB60 t.bout.o

Synbol s fromt. bout. o:

0x00000000 t x
0x00000004 t x$LF

Symbol x appears, and also symbol x$LF (which corresponds to the |eaf
entry point of x.).

Link-time Optimization

When the linker performsrelocation, it changescal | j/ cal | j x pseudo

instructionsinto bal / bal x instructions when the target of the

cal lj/calljxisaleaf procedure. It also changestheinstructionto a

cal | s when the target is a system procedure index. In your assembly

source, usethecal I'j and cal | j x pseudo-instructions, to be replaced as

shown in Table 7-2:

¢ When the pseudo-instruction argument is aleaf procedure, the linker
substitutes a branch-and-link, which is faster than a call.

» For system procedures, the linker substitutes system calls, providing
convenient accessto a set of kernel services.

« To prevent these optimizations, use the - O option.

Linker (Ink960, gld960)

Table 7-2

Branch-and-link and System-call Optimization

Pseudo-instruction Storage Class Replaced By
callj external, static call
leaf external bal
system call calls
calljx external, static callx
leaf external balx
system call Ida index, g13; calls g13

For a system call, the processor refersto a system-procedure-table index,

provided asthe cal | s argument:

e Foranindex fromo to 31 withcal I j , thelinker generatesacal | s
with aliteral index constant.

e For anindex from 0 to 259 with cal I j x, the linker generates
instructions to load the index into register g13 and perform the call as
follows:

| da i ndex, @13
calls g13

Since register g13 is used, avoid returning a structure longer than 16 bytes
from a system procedure. Instead, return pointersto a structure.

The following cause out-of-range errors:

e usingcal I j with anindex greater than 31

e usingcal | j x with anindex greater than 259 for COFF programs

e usingcal | j x with an index greater than 257, or lessthan 1, for b.out
format programs

For link-time optimization, design any hand-coded assembly language |eaf
procedures for both call (cal I j /cal | j x) and branch-and-link (bal /bal x)
access. Then, the linker can optimize the call while protecting any indirect
procedure accesses that are not recognized as optimizable.

7-17

i960® Processor Software Utilities User's Guide

7-18

The following example provides both branch-and-link and call access:

.l eaf proc _nane, _second
_nane: | da retlbl,gl4
_second: nov 914, 913
The subroutine appears here.

bx (913)
retlbl: ret

¢ Branch-and-link instructions place the address of the next instruction
in g14 before branching.

e Thel daingtruction at the _nane: label placestheret| bl address of
theret instructioningi4.

e Thefirst. | eaf proc argument, _nane, isused asthecal | andcal | x
entry point.

e Thesecond. | eaf proc argument, _second, used asthebal and bal x
entry point.

e Thebranch destination is g13, whose contents are determined by the
contents of g14, which vary depending upon the entry point. In either
case, the routine returns correctly when the bx instruction is executed:

O Thel dainstruction a _name placesret | bl in g14 when the
routineisentered by _nanme and by acal | or cal | x instruction.

0 Theg1l4 register contains the address of the instruction after the
bal or bal x when theroutineis entered by _second and by abal
or bal x instruction.

For more information onthecal 1j and cal | j x pseudo-instructions, see
the i1960® Processor Assembler User's Guide

Linker (Ink960, gld960)

Using calljx with the i960® Rx Processor

When using acal | j x pseudo instruction with the - ARP or - ARD option,
cal | j x uses adifferent syntax. For example, inserting acal | j x
instruction while using the - AJD setting might produce the following linker
output depending upon whether the target is a default call, leaf procedure,
or system call:

Default Call Leaf Procedure System Call
call x _target bal x _target, gl4d | da _sysprocl ndex, g13
calls (gl3)
When using acal | j x with the new - ARP or - ARD option, cal | j x usesthe
syntax:
calljx _target, tnpreg

where t npreg isalocal or global register. This change resultsin the
following sequences in the linker:

Default Call Leaf Procedure System Call
| da _target,tnpreg | da _target,tnpreg | da _sysprocl ndex, g13
call x (tnpreg) bal x (tnpreg), gl4d calls (g13)

Notice that with the 80960Rx cal | j x format all three call typesresultina
three-word instruction sequence, whereas with other architectures the
previouscal | j x format requires only two words.

Binding Profile Counters to Non-standard Sections

When compiling for two-pass compilation, the compiler places profile
countersin your code. These are COMMON variables, but are allocated
jointly; therefore, al profile counters occupy a contiguous stream of
memory. By default, these profile counters are allocated to the same
memory as other common variables, but they can be allocated to any
memory using the wildcard linker section directive.

7-19

i960® Processor Software Utilities User's Guide

7-20

Environment Variables

Environment variables set default operating parameters, such as search
paths and the target architecture. Define the environment variables before
invoking the linker. UNIX users must define the environment variables
with theset or set env command at the operating system prompt, in script
files, or in abootup filesuch as. cshrc, . | ogi n, or . profi | e. Windows
users define the environment variables at the operating system prompt, in
batch files, in the aut oexec. bat file, or using the Control Panel.

For more information on the environment variables used by the i960®
processor assembler and software utilities, seE@X® Processor
Assembler User's Guidé-or more information on defining environment
variables, see your host system documentation.

The linker requires you to define the following environment variables:

(D60BASE specifies base directory for invoking the linker as
gl d960.

| 960BASE specifies base directory for invoking the linker as
I nk960.

(960ARCH specifies the target-architecture libraries for the
gl d960 invocation.

| 960ARCH specifies the target-architecture libraries for the
| nk960 invocation.

®60LI B specifies an additional directory for the gl d960-
invocation library and directive-file search path.

(60LLI B library and directive-file search path.

| 960LI B specifies additional directories for the | nk960-
invocation.

| 960LLI B library and directive-file search path.

For more information on how setting these environment variables affects
the linker, see the Library Naming Conventions and Search Pagtxgion
on page 7-21.

Linker (Ink960, gld960)

Library Naming Conventions and Search Order

Thel abbr option specifies an abbreviation for one of the six standard
library types (standard ANSI, math, floating-point, C++ iostream library
functions, 64 bit integer support). The linker combines the abbreviation for
the type with the architecture option and big-endian and position-
independent code and data options, if any, to generate alist of candidate
library names.

abbrqual . a

| i babbrqual . a
abbr archqual . a

| i babbrarchqual . a

abbr isthe argument of the| option, one of:

c which contains the standard ANSI C functions.

m which contains the standard ANSI math
functions.

h which contains the accelerated floating-point
functions for processors without on-chip floating-
point support.

[which contains C++ iostream library
I which contains aMON960 low-level library.
u which contains 64 bit integer support functions

qual isnull unless big-endian, PIC or PID options are specified on the
linker command line. Then, qual isone of:

_borb which selects a big-endian library for Cx, Jx, and
Hx applications.
_porp which indicates that the library contains position-

independent data (PID).

_eore which indicates a PID and big-endian library for
Cx, Hx, and Jx applications.

7-21

i960® Processor Software Utilities User's Guide

7-22

ar ch isthe architecture option specified by the linker command line. Itis

one of:

ca for i960® Cx, Hx, and Jx processor-based
applications.

jx for 1960 Jx processor-tuned floating-point
libraries.

ka for 1960 KA and SA processor-based
applications.

kb for 1960 KB and SB processor-based
applications.

rp for i960 RP/RD processor-based applications.

The linker searches for each library name along a library search path
determined by the linker invocation.

When you invoke the linker ag d960, the search path is:

ok whNPRE

any path given with the option

any path given with thBEARCH_DI R directive

the path given with theseoLl B environment variable
the path given with theseoLLI B environment variable
the path given with thes60BASE environment variable
the current working directory

When you invoke the linker a9k960, the search path is:

ar PR

6.

any path given with the option

any path given with thBEARCH_DI R directive

the path, if any, given with the60LI B environment variable

the path, if any, given with thed60LLI B environment variable

thel i b subdirectory of the path given with th@s0BASE environment
variable

the current working directory

The following example shows a linker search path, using the slash (
UNIX directory syntax:

I nk960 -L/ffs/qqq -1xyz objects.o -Tpath2

Linker (Ink960, gld960)

The pat h2. | d directive file contains SEARCH DI R(/ abc) .

For the default (KB) architecture, the linker constructs the following
library filenames:

Xyz. a
libxyz.a
xyzkb. a

I i bxyzkb. a

The linker searches the following directories:

/ffs/qgqq/ xyz. a

[abc/ xyz. a

$1 960LI B/ xyz. a

$1 960LLI B/ xyz. a

$1 960BASE/ | i b/ xyz. a

./ xyz.a
/ffs/qgqq/libxyz.a

[abc/1ibxyz.a

$1 960LI B/ | i bxyz. a

$1 960LLI B/l i bxyz. a

$1 960BASE/ | i b/ | i bxyz. a
.Ilibxyz.a

[ffs/qgqq/ xyzkb. a

[abc/ xyzkb. a

$1 960LI B/ xyzkb. a

$1 960LLI B/ xyzkb. a

$1 960BASE/ | i b/ xyzkb. a
./ xyzkb. a

[ffs/qgqq/libxyzkb. a
/abc/|i bxyzkb. a

$1 960LI B/ | i bxyzkb. a
$1 960LLI B/ | i bxyzkb. a
$1 960BASE/ | i b/ | i bxyzkb. a
./1ibxyzkb. a

7-23

i960® Processor Software Utilities User's Guide

7-24

Library Search Order When i960® Rx Architecture
Is Selected

When anon-i960® Rx architecture is specified, the linker searches first for
architecture-neutral libraries, then for architecture-specific libraries. For
example, when the linker looks for the 1960 KA processor library, it

first tries to findl i bc. a and, if the library is not found, the linker looks for

l'i bcka. a. Because files targeted for the 1960 Rx processor require target-
specific libraries, the linker looks first for architecture-specific libraries
(e.g.,l i berp. a), and, if those libraries are not found, the linker looks for
architecture-neutral libraries (e.gi,bc. a).

Linker Options Reference

This section describes the linker command-line options in alphabetical
order.

Linker (Ink960, gld960)

A: Architecture

Slectslibraries;
identifies instruction set

Aarchi tecture

archi tecture IS SA, SB, KA, KB, CA, CA_DMA, CF, JA, JD, JF, JT,
HA, HD, HT, RD, RP, RM RN, VH, COREO, CORE1,
CORE2, or CORE3

Discussion

Specifying the architecture:
* sdlectsthelibraries for your target 1960 processor
« identifiesthe instruction set used in the input object files

To specify the architecture, use the A option. This overrides any
OUTPUT_ARCH directive and the | 960ARCH or G960ARCH environment
variable.

Some pairs of A arguments have identical effects:
¢ SAisthesameaskA

* SBisthesameaskB

e CAisthesameasCF and CA DVA

Y ou can prepare severa levels of default values for the architecture and

standard libraries. Omitting A uses the architecture specified by

OUTPUT_ARCH in the linker-directive file. Omitting both A and

OUTPUT_ARCH uses the default architecture for the linker invocation and the

architecture environment variables (described in the Library Naming

Conventions and Sear ch Paths section on page 7-21):

* Invoking the linker with | nk960 uses the | 960ARCH environment
variable.

¢ Invoking the linker with gl d960 uses the G360ARCH environment
variable.

7-25

i960® Processor Software Utilities User's Guide

e With 1 960ARCH or ®60ARCH undefined, the default architectureis
KB, regardless of the invocation command.

Specifying A with no valid argument causes afatal error.

New Architecture Options

The linker now accepts- AJT, - ARP, - ARD, - ARM - ARN, and - AVH
architecture switches or environment variable settings. The following table
shows the input/output compatibilities of all supported architectures.

Table 7-3 Supported Input/Output Architecture Combinations

Output
SA/ SB/ VH/
KA KB Cx Jx Hx Rx COREO CORE1 CORE2 CORE3
SAIKA o} C NA NA | NA NA NA NA NA NA
SB/KB NA C NA | NA NA | NA NA NA NA NA
| Cx NA NA C NA | NA NA NA NA NA NA
n Jx NA NA | NA C c NA NA NA C NA
p Hx NA NA | NA NA C NA NA NA NA NA
u Rx NA NA | NA C c NA C NA
t COREO | NA NA | NA C C C C NA C NA
CORE1 C C C C C NA NA C C C
CORE2 = NA NA | NA C C NA NA NA C NA
CORE3 = NA NA C c C NA NA NA C C

C = compatible.
NA = incompatible. Warning issued.

7-26

Linker (Ink960, gld960) ;

Libraries

The linker uses the architecture-specific standard libraries for an HLL
directive without arguments. The provided directivefiles, such aseva. | d,
contain the appropriate library directives. The designated architecture also
affects the library names generated from the | (library) option.

Example

Thefollowing links pr ot 0. o for aKA target.
| nk960 - AKA proto.o

Related Topic
| (Library Input)

B, T: Section Start Address

Assigns a section
starting address

Bsection addr

[bss [J
T[Hat a[] addr
[Text[]
section isasection name. The space between sect i on
and addr isrequired.
bss identifiesthe . bss section.
data identifiesthe . dat a section.
t ext identifiesthe . t ext section.
addr is a hexadecimal integer constant for T, or an

octal, decimal, or hexadecimal expression for B.

7-27

i960® Processor Software Utilities User's Guide

7-28

Put no space between T and bss, dat a, or t ext . Do not start the bss,
dat a, or t ext argument to T with adot (.).

A space between B and the section nameis optional. Use the full section
name, including any leading dot.

Discussion

To specify a section starting address, use B, overriding any other default or

directive-file section starting address. For adar, you can use:

e anocta constant starting with 0.

« adecimal constant starting with any digit other than 0.

» ahexadecimal constant starting with 0x.

e anexpression that can contain octal, decimal, and hexadecimal
constants and symbols defined in linker directive files or with the
def symoption.

For backward compatibility, T is supported, with the following restrictions:

e Specify addr as ahexadecimal constant. Expressions are not
evaluated. Regardless of the leading character or digit, T interprets the
address as hexadecimal.

e UseTforonly the. text,.data,and. bss sections.

Examples

» Thefollowing starts. dat a at the address 1000 hexadecimal and starts
the section named nydat a at the address 24 hexadecimal:
I nk960 - Tdata 0x1000 -Bnydata 0x24 filel.o file2.0

« When B and T locate the same section name, B overrides T. The
following starts. t ext at Oxc:

| nk960 -Ttext OxfO filel.o file2.0 -B.text Oxc

» The starting address of sect 1 in the following command can be
expressed as 012750 octal, 5608 decimal, or 0x15e8 hexadecimal:

| Nk960 -Bsect1l 0x1000+1000+01000 filel.o file2.0

Linker (Ink960, gld960)

C. Startup Alternative

Suppresses any
STARTUP directivein
the linker directivefile

C

Discussion

By default, the first object file or library specified on the command lineis
linked first. Tolink adifferent filefirst, use C. The C option overridesthe
STARTUP directive and returns to the default.

Example

For example, themy-t ar g. | d file contains a STARTUP(cr t est . 0)
directive. Thefollowing linksnewst art . o firstinstead of crt est . o:

I nk960 -C -Tny-targ newstart.o filel.o

c: Circular Library Search

Searcheslibraries
circularly

Discussion

By default, the linker processes libraries in order, reading from left to right
on the command line. In most cases, this approach works well.
Occasionally, however, libraries contain circular references. In such cases,
you can use the linker's ¢ option to search librariesiteratively to resolve
these references. This does, however, dightly change the semantics of

7-29

i960® Processor Software Utilities User's Guide

7-30

links; formerly undefined symbols may be defined by other librariesin the
loop.

Example

liblandlib2 interrelate asfollows:

libl defines references object file
X a X.0

y y.0

lib2 defines references object file
a y a.o

If you link using:
gl d960 -ux libl.a lib2. a

the linker opens| i bl. a first, finds symbol x resolved inthe x. o object
file, and readsit in. It finds no other references to symbolsit needs, so it
closes |ibl. a.

Thelinker then opens| i b2. a and resolves the symbol a referenced in the
x. o file(from 1ibl. a). Itreadsinthea. o object file. It finds no other
symbolsit can resolve, soit closes! i b2. a.

However, symbol y isleft unresolved, becauseit isdefinedinli bl. a and
referenced ina. o (from1i b2. a) . Thisisacircular definition.

The ¢ option resolves circular definitions by iterating through the list of

libraries and fetching object files from them as needed for each loop. The

search is complete when:

« there are no more undefined symbols, OR

» neither the number of globa symbols nor the number of undefined
symbols has changed from the previous iteration.

Linker (Ink960, gld960)

D: Inhibit CAVE section compression
Prevents the linker from

compressing CAVE

sections

D

Discussion

By default the linker compresses any sections set up for Compression
Assisted Virtual Execution (CAVE) by the user. Using the D option
prevents the linker from performing this processing. For more information
on CAVE, see thei960® Processor Compiler User’'s Guide

d: Define Common Symbol Space

Allocates common
symbols to .bss even
when doing -r links

dc
dp

candp have identical effects.

Discussion

To assign common-symbol spacein an output file linked with the - r
(Relocation) option, usedc or dp. This option has the same effect asthe
FORCE_COMMON_ALLCOCATI ON directive. (It places common symbols by
default into the . bss section.)

Thefinal link automatically allocates space for common symbols.

7-31

i960® Processor Software Utilities User's Guide

7-32

Example

The following assigns spacein the . bss section of a. out for common
symbols and retains relocation information for later re-linking:

| nk960 -rdc dcommo filel.o

defsym: Define a Symbol

Defines an absolute

def sym nane=expr

namne names the symbol.
expr initializes the symbol.
Discussion

To define asymbol on the linker command line, use def sym Y ou can
reference the symbol in your sourcetext, in adirective file, or on the linker
command line.

Example

The following resolves any referencestofil enunt infilel.oor
file2. 0. Itsvalueiszero (absolute).

I nk960 -defsym filenunl=0 filel.o file2.0

Related Topic
R (Read symbols only)

Linker (Ink960, gld960)

e: Entry Point
Defines the primary

entry point
esynmbol
synbol isasymbol name in atext-type section in the
output file.
Discussion

To define the primary entry-point symbol in the output file, usee.

The linker uses the following order of precedence to select an entry point:

1
2.
3.

4,

e on the command line

with e unspecified, ENTRY in the linker directivefile

with e and ENTRY unspecified, the first appearance of st art or _mai n
in your program

withstart and _nmai n undefined, the first addressin . t ext

Example

The following command linksfi | e. o for execution on a Cx target and
specifies the symbol ni dpoi nt asthe entry point:

I nk960 - Trrepcx -e midpoint file.o

7-33

; i960® Processor Software Utilities User's Guide

F: Format

Soecifies the COFF,

ELF or b.out format for

the output
Fcof f specifies COFF output.
Fel f specifies ELF output.
Fbout specifies b.out output.
Discussion

To specify an output format, use the F option.

gl d960 or gl d960 - Fbout generates b.out format output. The
Fbout option is not valid when the linker
isinvoked with | nk960.

gl d960 - Fcof f Or I nk960 generates COFF output.

gl d960 - Fel f or | nk960 - Fel f generates ELF output.

The output format generates the default output filename (see the Linker
Invocation section and the o option in this section). The default format for
gld960 is b.out; the default format for Ink960 is COFF.

Example

The following generates a COFF program:
gl d960 - Fcoff filel.o file2.0

7-34

Linker (Ink960, gld960)

f: Fill
Sets the fill value for

unused memory in an
output section

f val ue

val ue is atwo-byte hexadecimal constant in C-style
notation.

Discussion

Use this options to initialize blocks of memory in sections of an output file.

Y ou can prepare severa levels of default fill values:

A FILLdirectiveinside asection (valid only for parts of the section
defined after FI LL is encountered) definition is used first.

* Withnofill valueinside a section definition, the linker uses the FI LL
directive at the end of the current section definition, inside the
SECTI ONS directive.

« With nofill value defined in the directivefile, the linker uses the f
option.

* Withbothf and FI LL omitted, the linker usesao fill value.

Filler is used to ensure alignments between input sections:

a.s b.s .text O
.align 4 .align 4 Ida O0,g0
I da 0, g0 I da 0, g0 Filler
I nk960 a.o0 b.o I da 0, g0

7-35

i960® Processor Software Utilities User's Guide

7-36

Example

The following command linksfilel.o,file2. o,andfile3.o0to
produce an executable image named a. out . Thelinker places OxFFFF in
all gaps between the input sections in the output file.

| nk960 -f OxFFFF filel.o file2.0 file3.0 file.o xxx.ld
SECTI ONS {
one: {
first.o (.text)
+= 0x1000; /*filler*/
second. o (.text)

}

G: Big-endian Target

Produces a COFF or
ELF file for a big-
endian target

G

Discussion

To link big-endian instructions and data, invoke the linker and:

« Specify G, to select the big-endian search path and libraries, as
described in the Library Naming Conventions and Search Paths
section on page 7-21.

* Specify Fcof f or Fel f, for COFF or ELF output.

* Select thei960 Cx, Jx, or Hx architecture.

Linker (Ink960, gld960)

Jx and Hx processors only. Memory regions must be either all big-endian
or all little-endian. The linker emits warnings when you attempt to mix
big- and little-endian code.

[/‘ NOTE. Big-endian codeis supported for COFF or ELF on thei960 Cx,

Example

The following links with a user-defined library (abbreviated asnyca) for a
big-endian CA target. Thelinker usesthe _b or b qualifiersfirst when
searching for the library indicated by - I myca.

gl d960 -ACA -G -Fcoff fcab.o fcag.o -obigca.o -lcg -Im-1Inyca

The objects must have been produced using the assembler’'s G option.

gcdm: Decision maker

Invoke gcdm960
optimization decision
maker

gcdm

Discussion

See Chapter 6, gcdm Decision Maker Option, in your compiler manual for
more information on this option.

7-37

v

i960® Processor Software Utilities User's Guide

7-38

h: Help

Displays help

information
h
Discussion

To display help information for the linker, use the - h option.

H: Sort common symbols

Sorts common symbols
based on size.

Discussion

To use the linker to sort common symbols based on size, use the - H option.
For each input file in the linkage, the common symbols defined in that file
are sorted based on the size of the symbol.

Linker (Ink960, gld960)

J: Compress

Merges duplicated tags
from COFF symbol
tables, compresses
string table

Discussion

This option merges duplicated COFF symbol tags from output symbol
tables.

Linking with the J option eliminates such duplicated tags. The resulting
symbol table has tag indices that cross .file scope boundaries. The file has
F_cowr_SYMTAB ORed into the flags of the file header structure (see

cof f. h). Thestring table is aso compressed with this option.

L: Library Search Path

Changes the path for
library searches

Ldir

dir isadirectory name.

Discussion

To extend the linker search path (described in the Library Naming
Conventions and Search Paths section on page 7-21), use L. You can use
L multiple times on the command line. The L option has the same effect as
SEARCH_DI R, but directories specified with L are searched before
directories specified with the SEARCH_DI R directive.

7-39

; i960® Processor Software Utilities User's Guide

|: Library Input

Fecifies an input
library

| abbr

abbr is an abbreviated form of alibrary name. Only
one abbr can accompany each | .

Discussion

See the Library Naming Conventions and Search Paths section on page 7-
21 for information on this option.

Only thefirst filename found is used. Once closed, alibrary is reopened
only when specified again on the command line or in alinker directivefile,
orif the -c¢ isused.

Y ou can use the u option to create an unresolved reference to a symbol in
the desired library member before specifying the library.

% NOTE. Because the linker processes libraries and filesin order, the
& appearance order of thel option on the command lineis significant. For
example, gl d960 . o -1 h differsfromgl d960 -1 h f. o, and gl d960 . . .
-1 h-Icdiffersfromgl d960... -1c-1h.

7-40

Linker (Ink960, gld960)

Examples

In the following example:

e Inputfilel. o referstothe ABC symbol, defined in member 0 of
I'i bckb. a.

e Inputfil e2. o refersto the Xyz symbol, defined in member 0 of
l'i ba. a.

« Bothinput filesrefer to the FCN external function, defined in member 1
of both libraries.

The command lineis:
| nk960 filel.o -la file2.0 -lc

The FCN references are satisfied by | i ba. a, member 1; ABC is obtained
from1i bckb. a, member 0; and XYz remains undefined, since the library
l'i ba. aissearched beforefil e2. o isspecified.

To repair this, consider changing the command line to:
I nk960 filel.o -u_XYZ -la file2.0 -lc

Y ou can create an unresolved reference from the command line with the u
option. Such references link archive members needed to resolve the
undefined symbol, even when the input does not explicitly reference the
symbol. The following command creates an undefined symbol, called
rout 1, in the global symbol table:

| nk960 -u routl filel.o -la

The linker extracts the first member of library | i ba. a that definesr out 1.
With no other referencesto | i ba. a members, the linker would link only
the member resolving r out 1.

7-41

; i960® Processor Software Utilities User's Guide

M: Multiple Definition Warning

Included for backwards
compatibility, No effect

M

Discussion
This option is supported for backwards compatibility, but has no effect.

Related Topic
t (Multiple definition warning)

m: Memory Map

Provides a memory map
of the linked executable

Discussion

To write amemory map of the linked executable to st dout , specify m
which lists:

e the symbol locations

» thegloba common storage allocation

7-42

Linker (Ink960, gld960)

For information on st dout , see your host system documentation. Y ou can
redirect map information to afile using the N option.

Related Topic

N (Name memory map file)

N: Name Memory Map File

Soecifies a filename for
writing the memory map

Nfile

Discussion

Redirects the linker memory map to the specified file fi / e. When this
option is not specified but the moption is given, map information is written
to standard output. This option allows you to separate the linker map from
other information written to standard output, such as verbose messages and
warnings.

Example

The following command linkst . o with verbose messages, and redirects
the linker map to afilemapfil e. Verbose messages are till sent to
standard outpuit.

| Nnk960 -m -Nmapfile t.o -v

Related Topic
m(Memory map)

; i960® Processor Software Utilities User's Guide

n: Noinhibit Output

Writes an output file
regardless of errors

Discussion

To produce an output file even when the linker encounters non-fatal errors,
specify n. By default, any error suppresses the output file.

Example

The following command produces an output file named haserr. o
regardless of non-fatal errors:

I nk960 -n proto.o -ohaserr.o

O: Optimization of Calls Inhibited

Inhibits branch-and-link

or system call
optimizations

O{ b]| s}

b inhibits the replacement of cal | j andcal | j x
pseudo-operations with branch-and-link
instructions.

S inhibits the replacement of cal | j andcal | j x

pseudo-operations with system call instructions.
cal instructions remain.

7-44

Linker (Ink960, gld960) ;

Discussion

To inhibit branch-and-link optimizations, specify Ob. To inhibit system
call optimizations, specify Gs. By default, the linker performs both types
of call optimization.

Note that if afunction declared with #pr agma syst enpr oc lacksa
function definition, - Gs causes the linker to issue afatal error.

Example

The following command inhibits system call optimizations but allows
branch-and-link optimizations:

I nk960 -Cs proto.o

0: Output Filename

Names the output object
file
ofi | enane
filename names the output file. You can include afull or
partial pathname.
Discussion

To specify an output filename other than the default, use o. The default
output filenames are:

a. out for COFF output
b. out for b.out format output
e. out for ELF output

7-45

i960® Processor Software Utilities User's Guide

7-46

Example

The following command linksfi | e. o, creating pr ot 0. out inthe
/testdir directory:

| Nk960 -Texv -0 /testdir/proto.out file.o

Related Topic
F (Format)

P: Profiling

Puts profiling codein
the linker output to

support the

two-pass optimizing

compiler
P
Discussion

This option adds the profiling startup code used by the compiler. This
option is useful only when combined with -r. By default P is not included
when using ther option

Note that the linker does not properly handle afile with cc_info (two-pass
profiling information generated by the compiler) without the presence of a
.text section.

Example

The following command links for profiling optimization and makes the
output relocatable:

gl do60 -P -r file.o

Linker (Ink960, gld960)

p: Position-independence

Marks the linker output
file as position-

independent

p{blc| d}

Discussion

To link and mark the output file for position-independent code or data,
invoke the linker with | nk960 and specify p, as follows:

pb selects libraries with position-independent code
and data.
pc selects libraries with position-independent code.

Currently, all the libraries provided with your
i960® processor software toolset contain
position-independent code.

pd selects libraries with position-independent data.

For more information on library selection, seeltiarary Naming
Conventions and Search Paths section on page 7-21 and theption in
this section.

By default, files are linked as position-dependent. If you use these
switches and the files are not marked as position independent, the linker
issues a warning message.

For information on generating position-independent code and data, see
your compiler user's guide. For information on marking unlinked object
files for position independence, see the assembler user's guide. For
information on the position-independent and position-dependent libraries,
see the library supplement.

7-47

; i960® Processor Software Utilities User's Guide

When the linker directive file contains HLL () , the linker chooses default
libraries according to the position-independent flag.

R: Read Symbols Only

Includes only the
symbols from an object
file

R

Discussion

To read al the symbol names and addresses from an input object file,
specify R. Therest of theinput file is not relocated or included in your
linked output. With R, your output file can refer symbolically to non-
relocatable |ocations defined in other programs.

Example

The following command links only symbolsfromfi | el. o and includes
al of fil e2.ointhelinked output:

I nk960 -R filel.o file2.0

7-48

Linker (Ink960, gld960)

r: Relocation

Keepsrelocation entries
in the output object file

Discussion

With ther option, relocation entries remain in the output object file for a
subsequent linker call, and the linker issues no warnings about unresolved
references.

Relocation requires symbol table entries that you can remove with the s
option. The linker accepts no command line containing both the-r and - s
options.

Example

In the following incremental links, the first invocation linksfi | el. o and
file2. o to produce the relocatable output filef 1. out . The second links
file3.oandfil e4.otoproducef 2. out. Thethird linksthetwo
relocatable files to produce done. out and writes alink map to st dout .

| nk960 -r -o fl.out filel.o file2.0
I nk960 -r -o f2.out file3.0 file4d.o
| nk960 -m -0 done.out fl1.out f2.out

7-49

i960® Processor Software Utilities User's Guide

7-50

Related Topics

x, X (Compress) dc, dp (Define common-symbol space)
s (Strip)

S, s: Strip

Removes debugging or
symbolic information
fromthe object file

Discussion

For asmaller output file, strip symbol information with s (lower case),
removing:
e theline number entries
e thesymbols
« the symbol-table information
e InELF output, this eliminates all non-allocated sections (e.g.,
. debug_i nfo,.debug_line).

Using S (uppercase) retains the symbol table but removes debug symbols.
This option is supported in COFF and ELF only. In ELF, thisremoves all
non-allocated sections (. debug* sections). By default, all information
remainsin the output file.

Since relocation requires the symbol table, using s with the relocation
option (r) terminates the linker with an error.

Linker (Ink960, gld960)

Related Topics

x, X (Compress)
r (Relocate)

T: Target

Searches for the linker
directivefilein the
linker search path

Tfil enane

fil enane isthe linker directive filename. Y ou need not
specify a. | d extension.

Discussion

To find alinker directivefile in adirectory other than the current one,
specify thefilewith T. Providing the directive filename without T limits
the linker to searching in the current directory.

The linker searches for both fi | ename and fi | enane. | d.

With T, the linker searches for the directive file along the search path
described in the Library Naming Conventions and Search Paths section on

page 7-21.
The T option has the same effect as a TARGET directive.

For information on the linker command language used in linker directive
files, see Appendix A.

7-51

i960® Processor Software Utilities User's Guide

7-52

% NOTE. You must add the. | d extension when specifying any directive
‘ filenames that are the same as the standard section names:

text.ld useTtext.ld

data.ld useTdata. |l d

bss.Id use Thss. | d

You cannot use the T option to find a directive file named t ext , dat a, or
bss. You can usethenamestext. | d,data. | d,or bss. | d, but you must
append the filename and its extension when you use the T option.

Related Topics

A (architecture) B
L (library directory) Tt ext, Tdat a

t: Suppress Multiple Definition Symbol Warnings

Suppresses warning of
multiple symbol
definitions.

Discussion

Use this option to suppress warnings of multiple symbol definitions, even
if they differin size

Related Topic

W(Warnings)

Linker (Ink960, gld960)

u: Unresolved Symbol

Places unresolved
external symbol in the
symbol table

usynbol

synbol names the symbol.

Discussion

When creating programs of libraries only, such as run-time libraries, build
the symbol table with u. This option introduces an unresolved external
symbol into the output file symbol table. The linker resolves the reference
with the first module defining the symbol. This option is useful when
libraries are to be traversed in an order that prevents your application from
linking.

Example

The following example shows how to fetch the closure of components of
printf.

I nk960 -rvu printf -oprintf.o -lc

7-53

; i960® Processor Software Utilities User's Guide

v: Verbose
Displays linker progress

Vv

Discussion

To display the files sought by the linker as the linker search progresses,
specify v. The search messages appear on st dout .

V, v960: Version

Displays the linker
version number and
creation date

\Y
v960

Discussion

To display asign-on message on st dout during linking, use V. After
displaying the message, the linker continues processing.

To display the message without linking, use v960. Y ou need not provide
any other input. After displaying the message, the linker stops.

The message includes the version number of the linker, and the date and
timeit was created.

7-54

Linker (Ink960, gld960) ;

W: Warnings

Suppresses warnings

w

Discussion

The linker provides warning messages about non-standard conditions
arising during the link. Using Wsuppresses the warnings.

Related Topic

T (Suppress Multiple Definition Symbol Warnings)

X, X Compress
Omits local symbols

from the output symbol

table
X
Discussion

Delete local symbols from the output symbol table as follows:
X removes all local symbols.
X removes all local symbols beginning with L or adot (.).

When generating a compressed output file, you can aso remove symbolic
information with the strip option (s).

7-55

i960® Processor Software Utilities User's Guide

7-56

By default, all information remains in the output symbol table for symbolic
debugging.

Related Topic
S, s (Strip)

y: Trace Symbol

Traces the specified

ysynbol
synbol identifies the symbol.

Discussion

The linker traces the symbol synbol , indicating each file where it appears,
its type, and whether the file defines or referencesit. Y ou can trace
multiple symbols by using multipley options. If synbol comesfromaC
program, you must precede it with an underscore.

Linker (Ink960, gld960) ;

Z: Program database

Soecifies location of
program database

Z PDB directory

Discussion

Use this option to specify the location of the program database. For
information on the program database, used when performing whole-
program or profile-driven optimization, see your compiler manual.

z: Time Stamp Suppression

Suppresses the time
stamp in the COFF

output file
4
Discussion
For COFF files, the linker notes the current time and date in the output-file
header. To put Time Zero in place of the current time stamp, specify z.
Time Zero is 4:00, 31 December, 1969.

[/& NOTE. Neither b.out format nor ELF files have a time stamp.

7-57

Macro Processor (mpp960)

The mpp960 macro processor copies its input to its output, expanding
macros asit goes. The macros are either built-in or user-defined and can
take any number of arguments. mpp960 has built-in functions for
including named files, running UNIX commands, performing integer
arithmetic, manipulating text in various ways, doing recursion, and
performing other tasks. mpp960 can be used as a stand-alone macro
processor or as a front-end to a compiler or assembler.

mpp960 is compatible with the UNIX System V, Release 3 m4 utility, with
some minor differences. See the Compatibility with Other Macro
Processors section in this chapter for more details.

mpp960 Message Prefixes
This chapter contains many examples of mpp960 input and output. Output
from mpp960 is prefixed by the string =>. For example:
=>Qut put |ine from npp960
Error messages are prefixed by the string error - - >

error-->and an error nessage

mpp960’s predefined macros are described by a prototype call of the macro
using descriptive names as arguments.

regexp(string, regexp, [replacenent])

All mpp960 macro arguments are strings, but some strings are interpreted
as numbers, filenames, or regular expressions.

81

i960® Processor Software Utilities User's Guide

8-2

The[] characters around the third argument shows that this argument is
optional 0 whenitisleft out, it istaken to be the empty string. Anéllipsis
(.. .) lastin the argument list means that any humber of arguments can

follow.

Invoking mpp960

The format of the npp960 command is:

nmpp960 [-option]... [macro-definition]... [input-file]...

where - opt i on isany of the following:

Dnane Enters name into the symbol table, before any
input files are read. When =value is missing, the
value is taken to be the empty string. The value
can be any string, and the macro can be defined
to take arguments just as if defined from within

the input.

dfl ags Sets the debug-level according to the 7/ ags. The
debug-level controls the format and amount of
information presented by the debugging
functions.

a

Shows the actual argumentsin each
macro call.

Shows several trace lines for each
macro call.

Shows the expansion of each macro
cal, if itisnot void.

Shows the name of the current input file
in each trace output line.

Prints a message each time the current
input fileis changed.

Shows the current input line number in
each trace output line.

Macro Processor (mpp960)

efile

Hn

I dir

| num

Nn

p Prints a message when a named fileis
found through the path search
mechanism, giving the actual filename
used.

q Quotes actua arguments and macro
expansionsin the display with the
current quotes.

t Traces al macro calls madein this
invocation of mpp960.

X Adds a unigue macro call id to each
line of the trace output.

\% Shorthand for all the debug flags.

Redirects debug and trace output to the named
file. Error messages are still printed on the
standard error output.

Suppresses all mpp960 extensions that are not
supported by the UNIX System V m4 tool.

Setsthe size of the internal hash table for symbol
lookup n entries. The number should be prime.
The default is 509 entries.

Makes mpp960 search di r for included files that
are not found in the current working directory.

Makes this invocation of mpp960 interactive.
This means that all output is unbuffered and
interrupts are ignored.

Restricts the size of the output generated by
macro tracing to num bytes.

Allowsfor up to n diversionsto be used at the
sametime. The default is 10 diversions.

Suppresses warnings about missing or
superfluous argumentsin macro calls.

8-3

8 i960® Processor Software Utilities User's Guide

s Generates synchronization lines for use by the C
preprocessor or other similar tools. Thisis
useful, for example, when mpp960 is used as a
front end to a compiler. Source filename and line
number information is conveyed by lines of the
form#line I i nenum" fil enane" that are
inserted as needed into the middle of the input
(but always on complete lines by themselves).
Such lines mean that the following line originated
or was expanded from the contents of input file
filename alinelinenum fil ename may be
omitted when the filename did not change from
the previous synchronization line.

\Y Displays the version number of the program.
v960 Displays the version number and exits.
B,ST Provides for compatibility with UNIX System V

m4, but these options do nothing in this
implementation.

Macro definitions and del etions can be made on the command line, by
using the D and U options. They have the following format:

Dnane[=val ue] Enters nane into the symbol table before any
input filesare read. When =val ue ismissing, the
value istaken to be the empty string. The val ue
can be any string, and the macro can be defined
to take arguments, just asif defined from within

the input.

Unane Deletes any predefined meaning name might
have. Only predefined macros can be deleted in
thisway.

t name Enters nane into the symbol table as undefined

but traced. The macro is consequently traced
from the point it is defined.

84

Macro Processor (mpp960) 8

The remaining arguments on the command line are taken to be input
filenames. If no names are present, standard input isread. A filename of -
is aso taken to mean standard input.

Theinput files are read in the sequence given. The standard input can be
read only once, so the filename - should appear only once on the command
line.

Lexical and Syntactic Conventions

mpp960 separatesitsinput into tokens. A token is either a name, a quoted
string, or any single character that is not a part of either aname or a string.
Input to mpp960 can aso contain comments.

Names

A nameis any sequence of letters, digits, and the underscore character (),
where the first character isnot adigit. If aname has a macro definition it
is subject to macro expansion.

Examples of legal names are: f oo, _t np, and nane01.

Quoted Strings

A quoted string is a sequence of characters surrounded by quotes; the
number of start and end quotes within the string must balance. The so-
called start and end quote characters are the backquote (*) and apostrophe
(), respectively. The vaue of astring token isthe text, with one level of
quotes stripped off. Thus,* * isthe empty stringand " * quot ed’ * isthe
string: ‘ quot ed’ .

The quote characters can be changed at any time using the built-in macro
changequot e.

85

i960® Processor Software Utilities User's Guide

8-6

Other Tokens

Any character that is neither a part of a name nor part of a quoted string is
atoken by itself.

Comments

Comments in mpp960 are normally delimited by the characters # and
newline. All characters between the comment delimiters are ignored, but
the entire comment (including the delimiters) is passed through to the
output.

Comments cannot be nested, so the first newline after a# ends the
comment. The begin comment character can be included in the input by
quoting it.

The comment delimiters can be changed to any string at any time, using
the built-in macro changecom

How to Invoke Macros

This section describes macro invocation, macro arguments and how macro
expansion is treated.

Macro Invocation

Macro invocations have one of these forms:

macr onane

which isamacro invocation without any arguments, or:
macronane(argl, arg2, ..., argN

which is amacro invocation with Narguments. Macros can have any
number of arguments. All arguments are strings, but different macros
might interpret the arguments in different ways.

Macro Processor (mpp960) 8

The opening parenthesis must follow the nacr onane directly, with no
spaces in between. If it does not, the macro is called with no arguments at
al. For amacro call to have no arguments, the parentheses must be | eft
out. The macro call:

macronane()

isamacro call with one empty string argument, rather than a call with no
arguments.

Macro Arguments

A name that has a macro definition is expanded as amacro. If the nameis
followed by an opening parenthesis, the arguments are collected before the
macro is called. If too few arguments are supplied, the missing arguments
are taken to be the empty string. If there are too many arguments, the
excess arguments are ignored.

Normally, mpp960 issues warnings when a built-in macro is called with an
inappropriate number of arguments, but it can be suppressed with the Q
command line option. For user defined macros, there is no check of the
number of arguments given.

Macros are expanded normally during argument collection, and whatever
commas, quotes and parentheses that might show up in the resulting
expanded text defines the arguments aswell. Thus, if f oo expands to

, b, ¢, themacro call:

bar (a foo, d)

isamacro call with four arguments: a , b, c and d.

Quoting Macro Arguments

Each argument has leading ungquoted white space removed. Within each
argument, all ungquoted parentheses must match. For example, if foo isa
macro:

foo(() (“(") " (")

isamacro call, with one argument, whose valueis() (() (.

87

i960® Processor Software Utilities User's Guide

8-8

It is common practice to quote all arguments to macros, unless you are sure
you want the arguments expanded. To use this convention, you would
change the above command to:

foo(* () () (")

Macro Expansion

When any arguments to amacro call have been collected, the macrois
expanded and the expansion text is pushed back unguoted onto the input
and reread. The expansion text from one macro call might therefore result
in more macros being called, if the calls are included, completely or
partially, in the first macro call’s expansion.

Taking avery simple example, if f oo expandsto bar , and bar expands to
Hel 1 o wor | d. , theinput:

foo
expandsfirstto* bar’ , and when thisis reread and expanded, into:
Hell o worl d.

How to Define New Macros

Macros can be defined, redefined, and deleted in severa different ways. It
is aso possible to redefine a macro without losing a previous value.
Previous values can be brought back at a later time.

Defining a Macro

The normal way to define or redefine macros is to use the built-in def i ne:
defi ne(name, expansi on)
which defines nane to expand to expansi on.

The expansion of def i ne isvoid.

Macro Processor (mpp960)

The following example defines the macro f oo to expand to the text "Hel | o
Vorld. "

define('foo’, ‘Hello world.”)

=>

foo

=>Hel | o worl d.

The empty line in the output is there because the newline is not a part of
the macro definition and it is consequently copied to the output. Y ou can
avoid this by using the dnl macro.

Arguments to Macros

Macros can have arguments. The Nth argument is denoted by $n in the
expansion text, and is replaced by the Nth actual argument, when the
macro is expanded. Here is a example of a macro with two arguments. It
simply exchanges the order of the two arguments.

define('exch, "$2', "'$1")

=>

exch(argl, arg2)

=>arg2, argl

This can be used, for example, if you like the argumentsto def i ne to be
reversed.

define('exch’, '$2, $1")

=>

define(exch(‘‘expansion text’’, ‘‘macro’ ’))

=>

macr o

=>expansi on text

For an explanation of the double quotes, see Quoting Macro Arguments.
mpp960 allows the number following the $ to consist of one or more digits,
allowing macros to have any number of arguments.

i960® Processor Software Utilities User's Guide

Asaspecia case, argument zero, $0, is always the name of the macro
being expanded.

define(‘test’, ‘‘Macro nanme: $0’')

=>

t est

=>Macr o nane: test

If you want quoted text to appear as part of the expansion text, remember
that quotes can be nested in quoted strings. Thus, in:

define(‘foo', "This is macro ‘foo’ .M

=>

foo

=>This is macro ‘foo’.

Thefoo inthe expansion text is not expanded, since it is a quoted string,
and not a name.

Special Arguments to Macros

There is a special notation for the number of actual arguments supplied and
for al the actual arguments. The number of actual argumentsin a macro
call is denoted by $# in the expansion text. Thus, a macro to display the
number of arguments given can be:

define(‘nargs’, ‘$#)

=>

nargs

=>0

nar gs()

=>1

nargs(argl, arg2, arg3)

=>3

The notation $* can be used in the expansion text to denote all the actual
arguments, unguoted, with commas in between. For example:
define(‘echo’, ‘$*')

=>

echo(argl, arg2, arg3 , arg4)

=>argl,arg2,arg3 ,arg4

8-10

Macro Processor (mpp960)

Use the notation $@when each argument should be quoted. Itisjust like
$*, except that it quotes each argument. Thisisasimple example:
define(‘echo’, ‘$@)

=>

echo(argl, arg2, arg3 , arg4)

=>argl, arg2,arg3 ,arg4

Where did the quotes go? They were removed when the expanded text
was reread by mpp960. To show the difference, try:
define(‘echol’, ‘$*)

=>

define(‘echo2, ‘$@)

=>

define(‘foo’, ‘*This is macro foo.'")

=>

echol(foo)

=>This is macro This is macro foo..

echo2(foo)
=>This is macro foo.

A $ sign in the expansion text that is not followed by anything that mpp960
understands is simply copied to the macro expansion, asis any other text.

define(‘foo’, ‘$%$$ hello $$%')
=>

foo

=>3$3%$3$ hell o $$3%

If you want a macro to expand to avalue such as$12, put apair of quotes
after the $. This prevents mpp960 from interpreting the $ sign asa
reference to an argument.

Deleting a Macro
A macro definition can be removed with undef i ne:
undefine(' nane’)

which removes the macro narme. The macro name must be quoted, since it
is expanded otherwise.

The expansion of undef i ne isvoid.

811

i960® Processor Software Utilities User's Guide

812

foo

=>f 0o

define('foo’, ‘expansion text’)
=>

foo

=>expansi on text
undefine(‘foo’)

=>

foo

=>f 00

It isnot an error for nanme to have no macro definition. In that case,
undef i ne does nothing.

Renaming Macros

It is possible to rename an aready defined macro with the built-in def n:

defn(*‘ nane’)

which expands to the quoted definition of nane. If the argument is not a
defined macro, the expansion is void.

If nane is a user-defined macro the quoted definition is simply the quoted
expansion text. If nane isabuilt-in, the expansion is a special token that
points to the built-in's internal definition.

Thistoken is meaningful only as the second argument to def i ne (and
pushdef) and isignored in any other context. Its normal useis best
understood through an example that shows how to rename undef i ne to
zap:

define('zap’, defn(‘undefine’))

=>

zap(‘ undefine’)

=>

undefine(*‘zap’)

=>undefi ne(zap)

In thisway, def n can be used to copy macro definitions and definitions of
built-in macros. Even if the original macro is removed, the other name can
still be used to access the definition.

Macro Processor (mpp960)

Temporarily Redefining Macros

It is possible to redefine a macro temporarily, reverting to the previous
definition at alater time. Thisis done with the built-inspushdef and
popdef :

pushdef (* nanme’, ' expansion’)
popdef (* nane’)
which are quite analogousto def i ne and undef i ne.

These macros work in a stack-like fashion. A macro istemporarily

redefined with pushdef which replaces an existing definition of nane
while saving the previous definition before the new oneisinstalled. If
thereis no previous definition, pushdef behaves exactly like def i ne.

If amacro has several definitions (of which only oneis accessible), the
topmost definition can be removed with popdef . If thereisno previous
definition, popdef does nothing.

If amacro with several definitionsis redefined with def i ne, the topmost
definition is replaced with the new definition. If itisremoved with
undef i ne, al the definitions are removed, not only the topmost one.

It is possible to temporarily redefine a built-in with pushdef and def n.

Indirect Call of Macros
Any macro can be called indirectly with i ndi r :
indir(‘ nanme’, ...)

Thisresultsin acall to the macro nane which is then passed the rest of the
arguments. You canusei ndi r to call macroswith "illegal" names
because def i ne allows such names to be defined.

(Some macro packages have private macros that can be called only through
the built-ini ndi r.)

8-13

i960® Processor Software Utilities User's Guide

8-14

Indirect Call of Built-Ins

Built-in macros can be called indirectly with bui | ti n:
builtin(' name’, ...)
Thisresultsin acall to the built-in name which is then passed the rest of the

arguments. This can be used if nane has been given another definition that
has covered the original.

Conditionals, Loops and Recursion

mpp960 macros can contain tests and other elements that cause them to
evaluate differently at run time.

Testing Macro Definitions

There are two different built-in conditionals in mpp960. Thefirstis
i fdef:

ifdef(‘nane’, ‘string-1', [‘string-2'1]1)
which makes it possible to test whether a macro is defined or not. If nane
isdefined asamacro, i f def expandsto st ri ng- 1; otherwiseto

string-2. If string-2isomitted, it istaken to be the empty string
(according to the normal rules).

ifdef(‘foo', ‘‘foo’ is defined, ‘‘foo’ is not defined)
=>foo is not defined

define(‘foo’, ‘")

=>

ifdef(‘foo', ‘‘foo’ is defined, ‘'‘foo’ is not defined)

=>foo is defined

Macro Processor (mpp960)

Comparing Strings

Thei f el se conditional is much more powerful thani f def . You can use
i fel se asaway to introduce along comment, as an if-else construct, or
as amultibranch, depending on the number of arguments supplied:

i felse(' conmment’)
ifelse(‘string-1, *string-2', ‘equal’, ['not-equal’])
ifelse(‘string-1, *string-2°, ‘equal’, ...)

Whenii f el se isused with only one argument, it discards the argument
and produces no output. Thisisacommon mpp960 idiom for introducing
ablock comment, as an alternative to repeatedly using dnl . This specia
usage is recognized, so that in this case the warning about missing
argumentsis never triggered.

If called with three or four arguments, i f el se expandsinto equal (if
string-1andstring-2areequa character for character), otherwise it
expandsto not - equal .

i fel se(foo, bar, ‘true’)

=>

i fel se(foo, foo, ‘true’)

=>true

ifelse(foo, bar, ‘true’, ‘false’)
=>f al se

ifelse(foo, foo, ‘true’, ‘false’)
=>true

However, i f el se can take more than four arguments. If given more than
four arguments, i f el se works like a case or switch statement in traditional
programming languages. If string-1andstring-2aeequa,ifel se
expands into equal , otherwise the procedure discards the first three
arguments discarded and repeats. For example:

ifelse(foo, bar, ‘third", gnu, gnats, ‘sixth’, ‘seventh’)
=>seventh

A common use of i f el se isin macros implementing loops of various
kinds.

8-15

8 i960® Processor Software Utilities User's Guide

Loops and Recursion

There is no direct support for loops in mpp960, but macros can be
recursive. Thereisno limit on the number of recursion levels, other than
those enforced by your hardware and operating system.

L oops can be programmed using recursion and the conditional s described
previously.

The built-in macro shi ft can iterate through the actual argumentsto a
macro:

shift(...)

It takes any number of arguments and expands to al but the first argument,
separated by commas, with each argument quoted.

How to Debug Macros and Input
Macro debugging in mpp960 is described below.

Displaying Macro Definitions
The built-in dunpdef shows what a name expands into:
dunpdef (.. .)

This macro accepts any number of arguments. |f called without any
arguments, it displays the definitions of al known names; otherwise it
displays the definitions of the names given. The output is printed directly
on the standard error output.

The expansion of dunpdef isvoid.

define(‘foo’, ‘"Hello world.")
=>

dunpdef (‘ foo’)

=>foo: Hello world.

=>

dunpdef (* define’)

=>define: <define>

=>

8-16

Macro Processor (mpp960)

The last example shows how built-in macro definitions are displayed.

Tracing Macro Calls

It is possible to trace macro calls and expansions using the built-ins
traceon andtraceoff:

traceon(...)

traceoff(...)

When called without any arguments, t r aceon and t r aceof f enables or
disables tracing, respectively, for all defined macros. When called with
arguments, only the named macros are affected.

The expansion of t raceon andt r aceof f isvoid.

The call is displayed whenever atraced macro is called and the arguments
have been collected. The expansion can be displayed after the call if the
expansion of the macro call isnot void. The output is printed directly on
the standard error output.

define('foo’, ‘Hello World.")

=>

define(‘echo, ‘$@)

=>

traceon(‘'foo’, ‘echo’)

=>

foo

error-->npptrace: -1- foo

=>Hel |l o World.

echo(gnus, and gnats)
error-->nmpptrace: -1- echo
=>gnus, and gnats

The number between dashes is the depth of the expansion. The depthis1
most of the time, signifying an expansion at the outermost level, but it
increases when macro arguments contain unguoted macro calls.

See the d option (next topic) for information on controlling the details of
the debug display.

8-17

8 i960® Processor Software Utilities User's Guide

Controlling Debugging Output

The d option to mpp960 controls the amount of detail presented when
using the macros described in the preceding sections.

The f 1 ags following the d option can be one or more of the following:

a Show the actual argumentsin each macro call. Thisappliesto all
macro callsif thet flagis used, otherwise only the macros covered by
calsof traceon.

c Show several trace lines for each macro call. A lineis shown when
the macro is seen, but before the arguments are collected; a second line
is shown when the arguments have been collected, and athird lineis
shown &fter the call is complete.

e Show the expansion of each macro call if it isnot void. Thisappliesto
all macro calsif thet flagis used; otherwiseit applies only to the
macros covered by calls of t raceon.

f Show the name of the current input file in each trace output line.

i Print amessage each time the current input file is changed, giving
filename and input line number.

| Show the current input line number in each trace output line.

p Print amessage when anamed file is found through the path search
mechanism, giving the actual filename used.

g Quote actual arguments and macro expansions in the display with the
current quotes.

t Traceall macro cals made in thisinvocation of mpp960.

x Add aunique macro cal id to each line of the trace output. Thisis
useful in connection with the ¢ flag above.

VvV A shorthand for al of the above flags.

The default isaeq if no flags are specified with thed option. The
examplesin the previous two sections assumed the default flags. The
built-in macro debugnode allows on-the-fly control of the debugging
output format:

debugnode([fl ags])

8-18

Macro Processor (mpp960) 8

The f1 ags argument should be a subset of the letters listed above. There

are three special cases:

1. If theargument starts with a +, the flags are added to the current debug
flags.

2. If the argument starts with a -, the flags are removed.

3. If no argument is present, the debugging flags are set to zero (asif - d
was not given), and with an empty argument the flags are reset to the
default.

Saving Debugging Output

Debug and tracing output can be redirected to files using either the o
option to mpp960, or with the built-in macro debugfi | e.

debugfil e([fil enange])

sends all further debug and trace output to i / enane. If fil enane is
empty, debug and trace output are discarded. If debugfil e iscalled
without any arguments, debug and trace output are sent to the standard
error output.

Input Control

This section describes various built-in macros for controlling the input to
mpp960.

Deleting Whitespace in Input

The built-in dnl reads and discards al characters up to and including the
first newline:

dnl

It is often used in connection with def i ne to remove the newline that
followsthe call to define. Thus:

define(‘foo’, ‘Macro ‘foo’.’)dnl A very sinple macro, indeed.
foo
=>Macro foo.

8-19

i960® Processor Software Utilities User's Guide

8-20

Theinput up to and including the next newline is discarded.

Usualy, dnl isimmediately followed by an end of line or some other
white space. mpp960 produces awarning diagnostic if dnl isfollowed by
an open parenthesis. Inthis case, dnl collects and processes all arguments,
looking for amatching close parenthesis. All predictable side effects
resulting from this collection take place. dnl returns no output. The input
following the matching close parenthesis up to and including the next
newline, on whatever line containing it, is still discarded.

Changing the Quote Characters

The default quote delimiters can be changed with the built-in
changequot e:

changequote([start], [end])

where st ar t isthe new start-quote delimiter and end is the new end-quote
delimiter. If any of the arguments are missing, the default quotes* and’
are used instead of the void arguments.

The expansion of changequot e isvoid.

Inthisexample, the[and] characters are the new quote characters:

changequote([,])

=>

define([foo], [Macro [foo].])
=>

foo

=>Macro foo.

Macro Processor (mpp960) 8

If no single character is appropriate, st art and end can be of any length.
changequote([[,]])

=>

define([[foo]], [[Macro [[[fo0]]l].11)

=>

foo

=>Macro [foo].

Changing the quotes to the empty strings effectively disables the quoting
mechanism, leaving no way to quote text.

define('foo’, ‘Macro ‘FOO.'")

=>

changequot e(,)

=>

foo

=>Macro ‘' FOO .

‘foo’

=>Macro ‘' FOO .

There is no way in mpp960 to quote a string containing an unmatched | eft
quote, except using changequot e to change the current quotes.

Neither quote string should start with aletter or _ (underscore), as they are
confused with namesin the input. Doing so disables the quoting
mechanism.

Changing Comment Delimiters

The default comment delimiters can be changed with the built-in macro
changecom

changecom([start], [end])

where st ar t isthe new start-comment delimiter and end is the new end-
comment delimiter. If any of the arguments are void, the default comment
delimiters (# and newline) are used instead of the void arguments. The
comment delimiters can be of any length.

The expansion of changecomisvoid.

821

i960® Processor Software Utilities User's Guide

8-22

Comments are copied to the output, much as if they were quoted strings. If
you want the text inside a comment expanded, quote the start comment
delimiter.

Calling changecomwithout any arguments disables the commenting
mechanism completely.

Saving Input

It is possible to save some text until the end of the normal input has been
seen. Text can be saved to be read again by mpp960 when the normal
input has been exhausted. Thisfeatureis normally used to initiate cleanup
actions before normal exit, as when deleting temporary files.

Use the built-in nppwr ap to save input text:
nmppwr ap(string, ...)

This stores st ri ng and the rest of the arguments to be reread when end of
input is reached.

The saved input is reread only when the end of normal input is seen, but
not if nppexi t isused to exit mpp960.

It issafe to call nppw ap from saved text, but then the order in which the
saved text isreread is undefined. |f nppwr ap is not used recursively, the
saved pieces of text are reread in the opposite order in which they were
saved (LIFO O lastin, first out).

File Inclusion

mpp960 allows you to include named files at any point in the input.

Including Named Files

There are two built-in macros in mpp960 for including files:
i ncl ude(fil enane)

si ncl ude(fil enane)

Macro Processor (mpp960) 8

Both of these cause the file named 7 i I enare to be read by mpp960.
When the end of thefile is reached, input is resumed from the previous
input file. The expansion of i ncl ude and si ncl ude istherefore the
contents of i | enane.

Itisan error for an included file not to exist. If you don't want error
messages about non-existent files, use si ncl ude to include afile, if it
exists. It expands to nothing if it does not exist.

Normally, fileinclusion is used to insert the contents of afile into the input
stream. Thefact thati ncl ude and si ncl ude expand to the contents of the
file can be used to define macros that operate on entire files. The use of

i ncl ude isimportant, as files can contain quotes, commas and parentheses
that can interfere with the way the mpp960 parser works.

Searching for Include Files

mpp960 allows included files to be found in directories other than the
current working directory. If afileisnot found in the current working
directory, and the filename is not absolute, mpp960 searches for the filein
a specified search path.

The directories specified with the | option are searched first, in the order
found on the command line.

If the 1 9601 NC environment variableis set, it is expected to contain a
colon-separated list of directories, which are searched in order.

If the automatic search for include-files causes trouble, the p debug flag
can help isolate the problem.

Diverting and Undiverting Output

Diversions are away of temporarily saving output. The output of mpp960
can at any time be diverted to atemporary file, and can be reinserted into
the output stream later, undiverted.

8-23

i960® Processor Software Utilities User's Guide

8-24

mpp960 supports up to ten numbered diversions (numbered from 0 to 9).
Diversion number 0 isthe normal output stream. The number of available
diversions can be increased with the N option.

Diverting Output
Usedi vert to divert output:
di vert ([nunber])

where nunber isthediversion to beused. If nunber isleft out, itis
assumed to be zero.

The expansion of di vert isvoid.
Diverted output that has not been explicitly undiverted is undiverted when
all the input has been processed.
divert(1)

This text is diverted.

di vert

=>This text is not diverted.
=>This text is not diverted.
D

=>

=>This text is diverted.

Several calsof di vert with the same argument do not overwrite the
previous diverted text, but append to it.

Output diverted to an non-existent diversion is discarded. This can be used
to suppress unwanted output. A common example of unwanted output is
the trailing newlines after macro definitions. Hereis how to avoid them:

divert(-1)

define(foo, Macro foo.)
define(bar, Macro bar.)
di vert

=>

Macro Processor (mpp960)

Thisis acommon programming idiom in m4.

Undiverting Output

Diverted text can be undiverted explicitly using the built-in undi vert :

undi vert ([nunber], ...)

which undiverts the diversions given by the arguments in the order given.
If no arguments are supplied, al diversions are undiverted in numerical
order.

The expansion of undi vert isvoid.
divert (1)

This text is diverted.

di vert

=>This text is not diverted.
=>This text is not diverted.
undi vert (1)

=>

=>This text is diverted.

=>

Notice the last two blank lines. One of them comes from the newline

following undi ver t , the other from the newline that followed the di vert !
A diversion often starts with ablank line like this.

When diverted text is undiverted it is not reread; it is copied directly to the
current output, and it is therefore not an error to undivert into adiversion.

8-25

i960® Processor Software Utilities User's Guide

8-26

When a diversion has been undiverted, the diverted text is discarded, and it
is not possible to bring back diverted text more than once.

Attempts to undivert the current diversion are silently ignored. mpp960
allows named files to be undiverted. Given a non-numeric argument, the
contents of the file named are copied, uninterpreted, to the current output.
This complementsthe built-ini ncl ude. Toillustrate the difference,
assume the file foo contains the word bar :

Diversion Numbers

The built-in di vnumexpands to the number of the current diversion.

Discarding Diverted Text

Often it is not known when output is diverted whether the diverted text is
actually needed. A method of discarding a diversion is needed because all
non-empty diversions are brought back when the end of input is seen. If
al diversions should be discarded, the easiest way isto end the input to
mpp960 with di vert (-1).

No output is produced.

Macros for Text Handling

There are built-in macros for manipulating text in various ways, extracting
substrings, searching, substituting, and so on.

Calculating Length Of Strings
The length of astring can be calculated by | en:

I en(string)

which expands to the length of string, as a decimal number.

Macro Processor (mpp960)

Searching For Substrings

Usei ndex to search for substrings.

i ndex(string, substring)

expands to the index of the first occurrence of substri nginstring. The
first character in st ri ng hasindex 0. If subst ri ng does not occur in
string, index expandsto - 1.

Searching for Regular Expressions

Use the built-in r egexp to search for regular expressions:

regexp(string, regexp, [replacenent])

which searchesfor regexp in st ri ng. (The syntax for regular expressions
isthe same asin GNU Emacs.)

If repl acenent isomitted, r egexp expands to the index of the first match
of regexpinstring. If regexp doesnot match anywherein st ri ng, it
expandsto - 1. For example:

regexp(G\NUs not UN X, \<[a-z]\wt)

=>5

regexp(GNUs not UNI X, \<Q w)

=>-1

If repl acenent issupplied, r egexp changes the expansion to this
argument, with\ & substituted by st ri ng, and\ N substituted by the text

matched by the Nth parenthesized sub-expression of r egexp, \ 0 being the
text the entire regular expression matched.

regexp(G\Us not UNIX, VWA (\w#\)$, *** \Q *** \]1 x=x%)

=>*** UNlX*** nIX * k k

8-27

i960® Processor Software Utilities User's Guide

8-28

Extracting Substrings

Usesubst r to extract substrings.
substr(string, from [/length])

expands to the substring of st ri ng which starts at index f r omand extends
for 1 engt h characters, or totheend of st ri ng, if I engt hisomitted. The
starting index of astring is always0.

Translating Characters

Character trandation isdonewithtranslit.

translit(string, chars, replacenent)

expandsto st ri ng, with each character that occursin char s transated
into the character from r epl acenent with the same index.

If repl acenent isshorter than char s, the excess characters are del eted
from the expansion. If repl acenent isomitted, all charactersin st ri ng
that are present in char s are deleted from the expansion.

Both char s and r epl acenent can contain character-ranges such asa- z
(meaning all lowercase letters) or 0- 9 (meaning al digits). Toinclude a
dash - inchars or repl acenent, placeit first or last.

It isnot an error for the last character in the range to be larger than the first.
In that case, the range runs backwards: 9- 0 indicates the string
9876543210.

Substituting Text by Regular Expression
Global substitution in astring is done by pat subst :
pat subst (string, regexp, [replacenent])

Thissearches st ri ng for matches of r egexp and substitutes r epl acenent
for each match. (The syntax for regular expressionsis the same asin GNU
Emacs.)

Macro Processor (mpp960)

The parts of st ri ng that are not covered by any match of r egexp are
copied to the expansion. Whenever a match is found, the search proceeds
from the end of the match so a character from st ri ng is never substituted
twice. If regexp matchesastring of zero length, the start position for the
search isincremented, to avoid infinite loops.

To make areplacement:

1. Insert repl acenent into the expansion.

2. Substitute st ri ng for\ &

3. Substitute the text matched by the Nth parenthesized sub-expression of
regexp (\ 0 being the text the entire regular expression matched) for
\'N.

The repl acenent argument can be omitted, in which case the text
matched by r egexp is deleted.

Formatted Output

Usef or mat to format output.

format (format-string, ...)

works much like the C function pri nt f . Thefirst argument is a format
string that can contain %specifications and the expansion of f or mat isthe
formatted string.

The built-in f or mat ismodeled after the ANSI C pri nt f function. It
supports the normal %specifiersc, s, d, 0, x, X,u, e, Eandf; Itaso
supports field widths and precisions and the modifiers +, -, 0, #, h and | .
For more detailson pri nt f, see C: A Reference Manual.

8-29

i960® Processor Software Utilities User's Guide

Macros for Doing Arithmetic

Integer arithmetic using a C-like syntax isincluded. There are built-in
macros for smple increment and decrement operations.

Decrement and Increment Operators

The built-insi ncr and decr support the increment and decrement of
integers:
i ncr (nunber)

decr (nunmber)

which expand to the numerical value of nunmber incremented or
decremented, respectively, by one.

Evaluating Integer Expressions
Useeval toevaluate integer expressions.
eval (expression, radix, [w dth])
expands to the value of expr essi on.

Expressions can contain the following operators, listed in order of
decreasing precedence.

Unary minus
o Exponentiation
* | % Multiplication, division and modulo
+ - Addition and subtraction
== I= > >= < <= Relational operators
! Logical negation
& Bitwise and
| Bitwise or
&& Logica and
| Logical or

8-30

Macro Processor (mpp960) 8

A Bitwise exclusive or

All operators, except exponentiation, are left associative. Numbers can be
given in decimal, octd (starting with 0), or hexadecimal (starting with 0x).
Parentheses may be used to group subexpressions whenever needed. For
therelational operators, atrue relation returns 1, and afase relation
returns O.

eval does not handle macro names, even if they expand to avalid
expression or part of avalid expression. All macros must be expanded
before they are passed to eval .

If radi x is specified, it specifies the radix to be used in the expansion. The
default radix is 10. Theresult of eval isawaystaken to be signed. The

wi dt h argument specifies a minimum output width. The result is zero-
padded to extend the expansion to the requested width.

Notethat r adi x cannot be larger than 36 in the current implementation.
Any radix larger than 36 is rejected.

Running Host Commands

This section describes the mpp960 macros that let you run host system
commands from within mpp960.

Executing Simple Commands

Use syscmd to execute any shell command:

syscmd(shel | - conmand)

executes shel | - conmand as a shell command. The expansion of syscmd
isvoid.

The expansion is not the output from the command! Instead the standard
input, output and error of the command are the same as those of mpp960.
This means that output or error messages from the commands are not read
by mpp960 and might get mixed with the normal output from mpp960,

8-31

i960® Processor Software Utilities User's Guide

8-32

producing unexpected results. It istherefore a good habit to always
redirect the input and output of shell commands used with syscnd.

Reading the Output of UNIX Commands

Useesyscmd if you want mpp960 to read the output of a UNIX command:
esyscnd(shel | - conmand)

This expands to the standard output of the shell command.

The error output of shel I - command isnot a part of the expansion. It
appears along with the error output of mpp960.

Note that the expansion of esyscnd has atrailing newline.

Thisis not available on Windows hosts.

Exit Codes

Usesysval to see whether a shell command succeeded:

sysval

This expands to the exit status of the last shell command run with syscnd
or esyscnd.

Thisis not available on Windows hosts.

Making Names for Temporary Files

Commands specified to syscnd or esyscmd might need atemporary file
for output or for some other purpose. Use the built-in macro maket enp to
make temporary filenames.

maket enp(t enpl at e)

This expands to a name of a non-existent file made from the string

t enpl at e, which should end with the string XXxXxxX. The six xs are then
replaced, usually with something that includes the process ID of the
mpp960 process, in order to make the filename unique.

Macro Processor (mpp960)

Several calls of maket enp might expand to the same string, since the
selection criteriais whether the file exists or not. If afile has not been
created before the next call, the two macro calls might expand to the same
name.

Printing Error Messages

Y ou can print error messagesusingerrprint :
errprint(nessage, ...)

which simply prints nessage and the rest of the arguments on the standard
error output. The expansion of er rpri nt isvoid.

errprint(‘Illegal arguments to forloop

)

error-->l11egal argunents to forloop

=

A trailing newline is not printed automatically, so it must be supplied as
part of the argument, asin the example.

Two utility built-ins make it possible to specify the location of the error.
_file

_line__

expand to the quoted name of the current input file and the current input
line number in that file.

errprint(‘mpp960:’ _ file__:__line__: ‘lnput error

)
error-->npp960: 56. errprint:2: |nput error

=>

8-33

i960® Processor Software Utilities User's Guide

Exiting from mpp960

If you need to exit from mpp960 before the entire input has been read, use
nppexi t :

nppexi t ([code])

This causes mpp960 to exit, with exit code code. If code isleft out, the
exit code is zero.
define(‘fatal _error’, ‘errprint(‘npp960:’ _ file__: _ line__':
fatal error: $*')nppexit(1)’)
=>
fatal _error(‘This is a BAD one, buster’)
error-->npp960: 57.nppexit: 5: fatal error: This is a BAD one,
bust er

After thismacro call, mpp960 exits with exit code 1. Thismacroisonly
intended for error exits, since the normal exit procedures are not followed,
e.g., diverted text is not undiverted, and saved text (see nppwr ap) is not
reread.

Compatibility with Other Macro Processors

This section describes the differences between mpp960 and the UNIX
System V, Release 3, m4 macro processor.

Extensions in mpp960

mpp960 contains a some facilities that do not exist in UNIX System V m4.
These extrafacilities are all suppressed by using the G option, unless
overridden by other command line options.

* Inthe $N notation for macro arguments, N can contain several digits,
while UNIX System V m4 accepts one digit only. Thisallows
mpp960 macros to take any number of arguments, not only nine.

Macro Processor (mpp960)

* When filesincluded with i ncl ude and si ncl ude are not found in the
working directory they are sought in a user-specified search path. The
search path is specified by the| option and the | 9601 NC environment
variable.

* Argumentsto undi vert can be non-numeric, in which case the named
fileisincluded uninterpreted in the output.

« Formatted output is supported through the f or mat built-in which is
modeled after the C library function pri nt f .

» Searches and text substitution through regular expressions are
supported by r egexp and pat subst .

¢ OnUNIX (but not in Windows), the output of shell commands can be
read into mpp960 with esyscnd.

» Thereisindirect accessto any built-in macro with bui I ti n.
e Macros can be called indirectly throughi ndi r.

» The name of the current input file and the current input line number
are accessible through the built-ins__file__and__line__.

e Theformat of the output from dunpdef and macro tracing can be
controlled with debugnode.

« Thedestination of trace and debug output can be controlled with
debugfile.

In addition to the above extensions, mpp960 implements the following
command line options: Vv, d, 1 , 0, N, and t . For adescription of these
options, see the Invoking mpp960 section.

Also, the debugging and tracing facilities in mpp960 are much more
extensive than in most other versions of m4.

8-35

i960® Processor Software Utilities User's Guide

8-36

Facilities in UNIX System V m4 not in mpp960

There are afew incompatibilities between mpp960 and the UNIX System
V mé4 tool:

UNIX System V m4 supports multiple argumentsto def n. Thisis not
implemented in mpp960.

When text is being diverted mpp960 implements sync lines differently
from UNIX System V m4. mpp960 outputs the sync lines when the
text is being diverted, and UNIX System V m4 outputs it when the
diverted text is being brought back.

The problem is determining which lines and filenames should be
attached to text that is being, or has been, diverted. UNIX System V
m4 regards all the diverted text as being generated by the source line
containing the undi ver t call, whereas mpp960 regards the diverted
text as being generated at the time it is diverted.

Invoking mpp960 without the G option defines the macro __gnu__ to
expand to the empty string.

On UNIX systems, mpp960 without the G option defines the macro
__uni x__; otherwise the macro uni x. Both expand to the empty
string.

Munger (gmung960)

The gmung960 utility modifies text section and/or data section memory

load addresses in an object file. Use gmung960 to load text and/or data at

an address other than where it was linked. For example, some code must

copy its datafrom ROM to RAM before execution. In this case, the datais
linked at the RAM address, but it must be loaded at the ROM address from
which it will be copied. The file’s data load address corresponds to the
RAM address at link time. After link time, you can modify the data load
address to correspond to the ROM address. This lets the ROM burner or
loader know the correct address to place the section’s contents.

Invoke the munger as:

gmung960 [-option]... file
option isone of the options listed in Table 9-1.
file identifies the object file to be munged. It must be

a linked, executable file.

9-1

i960® Processor Software Utilities User's Guide

9-2

Table 9-1

gmung960 Options

Option
D [addn]

h
T [addn

v960

Effect

Changes the load address of the file’s data section to addr. addr
is interpreted as a decimal, unless preceded by 0x (hex indicator).
If addr is omitted, the load address is the first available address
following a previously-specified address.

gives a help message.

changes the load address of file's text section to addr. addr is
interpreted as a decimal number, unless preceded by 0x (hex

indicator). If addr is omitted, the load address is either zero or the
first available address following a previously-specified address.

writes gmung960 version information to st dout and exits without
doing anything.

NOTE. The section specification options T and D are processed in the
order they appear in the invocation.

Name Lister (gnm960, nam960)

To display symbolic information on st dout , invoke the name lister for:
» relocatable object files

* non-relocatable object files

o libraries

e library members

Unless you specify otherwise, the symbols appear in the order encountered.

With release 6.0, the name lister supports C++. When listing the names of
symbols from object files generated by the C++ compiler the name lister
displays the demangled name. The demangling function can be disabled by
using the - M option when invoking the name lister.

NOTE. Before using the name lister, make sure your object file or
archiveisin host-endian byte order. To determine byte order, use
gdmp960/dmp960 described in Chapter 6. To change the byte order, use
the cof960/objcopy converter described in Chapter 3.

Invoke the name lister as:

Hram9604 ' fil

Hgnne600 [-option]... [filenane...]

nanB60 invokes the name lister for backwards
compatibility with CTOOL S960 Release 3.5 and
|ater.

gnmo60 invokes the name lister for backwards
compatibility with GNU/960 Release 2.1 and
|ater.

10-1

1

i960® Processor Software Utilities User's Guide

10-2

option

fil enane

isany option listed in Table 10-1.

specifies the name(s) of one or morefiles
(separated with spaces), whose symbol tables you
want the name lister to display. If you do not
specify afilename, the name lister tries a.out.

Y ou can specify complete pathnames. On UNIX,
case is significant in filenames and pathnames.

The symbolic information appears on st dout . The display includes:

Code

Name
Vaue

the section code, aslisted in Table 10-2, in
lowercase for local symbols and in uppercase
otherwise

the symbol name

the symbol value

Name Lister (gnm960, nam960)

Table 10-1

gnm960/nam960 Options

Option

hel p

© O oS

-

c 4 o

v960

Effect

displays the debug information.
displays the addresses in decimal.

displays only the global (external) and static symbols, including the
leaf-procedure names.

displays all the symbols, including redundant symbols (such as
.text, .data, and .bss) that are usually suppressed. This option
overrides the g or e option.

is the same as e.

suppresses the output-header display.

displays help information.

disables the name demangling function.

sorts the symbols alphabetically by name. This option overrides v.
displays the addresses in octal.

displays the information in a three-column parseable format (the
b.out and ELF format default).

Reverses the symbol sorting order of the n or v options (sorts in
descending order).

displays the names of the files defining or referencing each symbol.
displays the library symbol map.
truncates the symbol names to fit the display-column widths.

displays only the undefined symbols. This option overrides g, e, or
f.

displays the name-lister version and creation date on st dout , and
continues processing.

sorts the symbols ascending numerically by value.
displays the version and creation date, and stops processing.
displays the addresses in hexadecimal (the default).

10-3

i960® Processor Software Utilities User's Guide

10-4

Table 10-2

Section Codes

Code Symbol Type

undefined symbol

absolute (non-relocatable) symbol

text-type-section symbol (instructions)

data-type-section symbol (initialized data and constants)
.bss symbol (uninitialized data)

common symbol

any other type section symbol (COFF or ELF only)
filename symbol

N ™ 0O O T oo —*+ o9 C

debugger symbol-table entry

The COFF display also includes:

Class astorage class, such asext er n for an external
symbol or f cn for the beginning and end of a
function block

Line the source line number defining the symboal, for
object files containing debug information

Type the type and derived type, for object files
containing debug information

Size the sizein bytes, for object files containing debug
information

To suppress the additional COFF information, specify the p option.

Symbols are displayed in the order in which they appear in the symbol
table, preserving the scoping information. Y ou can sort the symbols by
name or address with then, R, and v options.

Name Lister (gnm960, nam960)

Examples

1. Thefollowing displays the symbols from each of the members of the
archive sanpl e. a. The name lister displays the filename where each
symbol isfound. This example usesthe - T options to truncate symbol
names, which keeps the output columns equally spaced.

nan60 -r -T sanple.a
Synbol s from synbol . a[hell 0. 0]:

hello.o
Nane Val ue Cl ass Type Si ze Line Section
hel | *: gcc2_conpi | ed. | 0x00000000] | abel | [| | . text
h*: __ gnu_conpi |l ed_c| 0x00000000] | abel | [| | . text
hell o.0: _main | 0x00000010] ext er n| ()] 0x0018| | . text
hello.o: _printf | 0x00000000] ext er n| [| |
Synbol s from synbol . a[byte. o] :
byte. o
Nane Val ue Cl ass Type Si ze Line Section
bye. 0: gcc2_conpi | ed. | 0x00000000] | abel | [| | . text
b*: __ gnu_conpil ed_c| 0x00000000] | abel | [| | . text
bye. o: _main | 0x00000010] ext ern| ()] 0x0018| | . text
bye. o: _printf | 0x00000000] ext er n| [| |
2. Thefollowing suppresses the header. No column labels appear in the
output.
nan®60 -h hello.o
hello.c | | file | | | |
_main | Olextern| int()] 16| | . text
_printf | 0| ext ern| [| |

10-5

i960® Processor Software Utilities User's Guide

3. Thefollowing displaysthe pr ot 0. 0 symbolsin parseable format:

nanmB60 -p proto.o

f proto.c
00000000 T _nain
00000352 T _watering
00000368 T _is_tine
00000416 T _watered
00000000 U _printf
00000000 U _scanf
00000000 U _init_bentime
00000000 U _exit
00000000 U _bentine
00000000 U _srand48
00000000 U _Irand48

4. Thefollowing displays only the external symbols:

namB60 -e hello.o
Synmbol s from hell o. o:

Nane Value dass Type Size Line Section
_main | 0| ext ern| int()] 16| | . text
_printf | 0| ext ern| | | |

5. Thefollowing displays the full output:

nam®60 -f hello.o
Synbol s from hell 0. o:

Nane Value dass Type Si ze Line Section
hello.c | | file | | | |

_main | 0| ext ern| int()] 16| | . text
.text | 0| static| | 2| 3| . text
.data | 16| static| | | | .data

. bss | 32| static| | | | . bss
_printf | 0| extern| | | |

10-6

Name Lister (gnm960, nam960)

6. The following sorts the symbols by name:

nanB60 -n proto.o
Synbol s from proto. o:

Nane Value dass Type Si ze Line Section
_bentine | 0| ext ern| | | |
_exit | 0| ext ern| | | |
_init_bentine | 0| ext ern| | | |
_is_tine | 368| extern| int()] 44| | . text
_lrand48 | 0| ext ern| | | |
_main | 0| ext ern| int()] 348| | . text
_printf | 0| ext ern| | | |
_scanf | 0| ext ern| | | |
_srand48 | 0| ext ern| | | |
_watered | 416| ext ern| int()] 36| | . text
_watering | 352| extern| arg()| 4| | . text
proto.c | | file | | | |

7. Thefollowing sorts the symbols by value:
nanB60 -v proto.o

Nane Value dass Type Si ze Line Section
proto.c | | file | | | |
_bentine | 0| ext ern| | | |
_exit | 0| ext ern| | | |
_init_bentine | 0| ext ern| | | |
_lrand48 | 0| ext ern| | | |
_main | 0| ext ern| int()] 348| | . text
_printf | 0| ext ern| | | |
_scanf | 0| ext ern| | | |
_srand48 | 0| ext ern| | | |
_watering | 352| extern| arg()| 4| | . text
_is_tine | 368| extern| int()] 44| | . text
_watered | 416| ext ern| int()] 36| | . text

10-7

ROM Image Builder (grom960)

grom960 extracts the text (executable code) and data sections from one or
more object files, places them in specified locations in a binary image, and
converts the binary image into one or more filesin Intel hex format
suitable for submission to a PROM programmer. grom960 also provides
optionsthat allow bytes from the binary image to be interleaved into
multiple banks of PROMs. grom960 accepts EL F, COFF, or b.out object
file formats as input.

Invocation

The invocation command is;

grom®60 [-option]... section_spec...

option isone of the optionslisted in Table 11-1.
Numeric arguments are interpreted as decimal,
unless preceded by 0x (hex).

section_spec specifies the placement of atext or data section
into the binary image. Multiple specifications are
alowed; they are processed in the order
encountered. There are four types, listed in
Table 11-2.

111

i960® Processor Software Utilities User's Guide

Table 11-1 grom960 Options

Option
20

An

bn
c1l6|32
En

f

h

0 name

Sn

v960
wn

Effect

generates extended address records in 20-bit format (e.g., as
used by the 8086), if the ROM is larger than 64K. The default is
to generate 32-bit format records. This option is included
primarily for compatibility with old ROM burner software that
does not support 32-bit format.

sets checksum storage address to n. Default = 0x10000.
generates images for n banks of ROMs. Default = 1.
generates a 16-bit or 32-bit (CRC) checksum.

sets checksum end address to n. Default = Oxffff.

dumps a full image and does not skip records with all ones.
displays help output and exits.

suppresses generating hex output files. Instead, dumps the
raw binary image to output file image.

generates images for ROMs that are n bytes long. The default
is 0x10000 (64K).

writes a map of the binary image to stdout.

specifies the base name of the output file(s). When the i
option is used, the output file contains the binary image.
(Default filename is image.) When the i option is not used, a
series of files named nanexy. hex contain the hex ROM
images. (Default is a series of files named romxy.hex.)

sets the checksum start address to n. Default is 0x0.
prints the version number and continues.

produces a map, as with the m option, and summarizes the
ROM configuration settings.

writes grom960 version information to stdout and quits.

generates ROMs that are n bytes "wide" (the default is 1).
grom960 writes n bytes at a time from the binary image to each
bank of ROM, before moving on to the next ROM bank. The
combination of the b and w options controls interleaving of
ROMs.

11-2

ROM Image Builder (grom960)

Table 11-2 Section Specifications

Section Specification Effect

filename[,addr] places the text section of the specified file at address
addr, relative to the start of the image, and places the
data section immediately following the text section.

B filename[,addn also places both the text and data sections of the
specified file at address addr, relative to the start of
the image. However, the order of the text and data
sections is the same as in the input file (i.e., the one
linked at the lower address comes first); and any gap
between the sections is preserved in the output

image.
D filename[,addn places the data section of the specified file at address
addr.
T filename[,addn places the text section of the specified file at address
addr.
% NOTE. The addr argument is always optional. Omitting the address
‘ places the specified section(s) immediately after the one in the preceding

specification (or at address 0 in the binary image, in the case of the first
section specification).

Using grom960
Generating ROM imagesis a two-step process:

1. creating abinary image, and
2. converting the image to aROM image (Intel hex) files.

11-3

11

i960® Processor Software Utilities User's Guide

11-4

Creating Binary Images

Regardless of the addresses where the code was linked, all bytesin a ROM
image appear in a contiguous address space relative to the ROM’s base
address. For instance, a 64K ROM based at address Oxffff0000 has a
ROM address space of [0,0xffff], byte O of the ROM being the byte that is
addressed at Oxffff0000 at run time.

The binary image is generated by extracting the text and data sections of
the input files and placing them at the specified locations in the ROM
address space. Unused address space bytes are initialized to Oxff, the value
of abytein an erased PROM.

Converting the Image to Hex Files

After asingle binary image is created, it isinterleaved according to the
ROM width and the number of banks requested. If the width is w; and the
number of banksis b, the first whytes in the image are written to the first
bank of ROMs, the second wbytes are written to the second bank, and so
on. After the bth bank has been written, output resumes at the first bank.
For example, if the number of banksis four, the ROM width istwo, and
the first sixteen bytes of the image are:

0x00112233445566778899aabbccddeef f

then the four banks would begin with the following values:

bank 0: 0x00118899. . .
bank 1: 0x2233aabb. . .
bank 2: 0x4455ccdd. . .
bank 3: 0x6677eeff. ..

Each bank corresponds to at least one ROM. Every time the amount of
data written to a bank exceeds the specified ROM length, a new ROM
image fileis started.

Each output fileisin Intel hex format and corresponds to asingle ROM
device. The output files are named basenanexy. hex, where y is the bank
number and x is the sequence number within the bank. Both x and y are

ROM Image Builder (grom960)

numbered from 0. For example, if the number of banksis four, the ROM
length is 64K, and the total image size is 512K, then the following hex files
would be output:

bank O: r onD0. hex, roml0. hex
bank 1: ronD1. hex, romll. hex
bank 2: r onD2. hex, roml2. hex
bank 3: r onD3. hex, roml3. hex

Example 1

This example converts the executable b.out into ROM images, with text
followed immediately by data, with even bytesin one bank and odd bytes
in another, for aROM with 128-K byte capacity.

grom®60 b.out -b 2 -1 0x20000

If the binary image is less than 256 Kbytes, there are two output files:
ron00. hex (even bytes) and r on0D1. hex (odd bytes).

Example 2

This example assumes two b.out files as input: b. out contains the text and
data for an i960® CA processor, and contains the Initial Memory

Image (data that must appear at locatioi f f f f 00 when the processor
powers up). Assume that the total binary image is under 64 Kbytes, and
that the ROM will be installed at address f f f 0000.

grom®60 b.out im,O0xff00 -0 ca

A single output file, name¢la00. hex, is created.

Example 3

This example makes the same assumptions as Example 2, but data (other
than the Initial Memory Image) should appear at location 0x8000 in the
ROM (Oxffff8000 in the runtime address space).

grom®60 -T b.out -D b.out,0x8000 im ,6O0xff00 -0 ca

11-5

ROM Image Builder (rom960)

This chapter describes using the rom960 rommer to convert ELF, COFF,
or b.out object files to unformatted executable images.

Asshown in Figure 12-1, you can prepare code for a specific target
environment. The linker generates object files for adownloader. rom960
facilitates rearrangement of section descriptions so that the code can be
programmed into programmable read-only memory (PROM) devices.

Figure 12-1 rom960 Rommer Operations

rom960
Convert to Rgarr?nge Create Absolute [——F—1 PROM
——>| ROM-able D eC.'OIF —>| Memory Image m Loadable
code (??nc(;'\?e')on (mkimage) f————1 Code

Executable
Code .| Debugand 000
Run Target
gdb960

A0021-01.eps

12-1

i960® Processor Software Utilities User's Guide

12-2

Figure 12-2

To place code in ROM, code sections must be located at the PROM device

addresses. Trandating aformatted object file into an unformatted

executable image, may include any of the following steps:

* re-ordering the bits to match machine requirements.

e organizing the imagesto fit the target ROMs.

» calculating a checksum and incorporating it in the image.

e outputing theimagein Intel hexadecimal format for a PROM
programming device.

Figure 12-2 shows an example of the rommer trandation of a COFF file.

Data Placement in Memory Image

COFF Memory Image
Headers
Raw Data 1 > Data
Raw Data 2
Raw Data 3 \ Data
Data
— l—

0SD1702

ROM Image Builder (rom960) 1 2

Rommer Invocation

Use this syntax to invoke the rommer:
ronB60 -[option] [dfile [arglist]]

where opt i on isany of the following:

h displays help.
\% displays the version number and copyright date.
v960 displays version information and exits.
dfile specifies arommer directive filenamed af il e. | d.
argl i st isup to 10 directive-file arguments, separated by spaces.
[NOTE. You must either specify dfi | e in the invocation or supply the
‘ directivesinteractively after entering ther on260 command. To end an

interactive session, typeexit,quit, Ctrl-z (inWindows), or Ctrl-d (on
UNIX) at the rommer prompt.

Directive Files

The rommer directive filename must have a. | d extension. When you run the
rommer, you specify the base filename without the . | d extension. Table 12-1
lists the rommer directives. For information on using the directives, see the
Directive Reference section.

12-3

i960® Processor Software Utilities User's Guide

Table 12-1 rom960 Directives

Directive Operation

checksum computes and stores a checksum.

hel p Displays help information and exits.

i hex translates an image to an Intel hexadecimal format.

map reports the section addresses, section sizes, and the image file
size to stdout.

nkfill translates a COFF executable file into a memory image
containing an image of the program as it would appear when
downloaded.

nki nage creates an image of the executed file.

nove rearranges the sections.

pat ch changes the image contents.

per nut e rearranges the address (permute_a) or data (permute_d) bits.
rom specifies the address space length and width.

sh executes a host-system command.

split splits one image into smaller images of the specified size.

12-4

ROM Image Builder (rom960)

Y ou can put rommer directivesin your linker-directive files:

e Useonly lowercase letters for the rommer directives.

e Start rommer-directive lines with #* in columns 1 and 2, putting no
space between the #* and the rommer directive.

e Separate the rommer directives from the rest of the linker-directivefile
with/* and */. Thelinker processes no lines between the/* and */ .

Y ou can write directive files for use with different sets of input. Usethe
parameters $0 through $9 in adirective file to accept arguments
sequentially from the rommer invocation. For example, the following uses
therom I d directivefilefirst to build mypgm r from nypgm o, then to
build pgne. r from pgn?. o:

rom®60 rom | d mypgm o nmypgm s First invocation
ron®60 rom | d pgn2. 0 pgn2.s Second invocation

Hereis a sample linker-directive file that produces a ROM image:

_intr_stack = 0x00040000;
ram_= 0x30000000;
MEMORY {
rom 0=0x00000000, | =0x40000
ram 0=0x301f 0000, | =0x40000

}

SECTI ONS {
.text @ { } >rom
.data : { } >ram
.bss : { } >ram

}

/*

#*nove $0

#* ki mage $0 $1

#*split $1 65536 16 65536 8 $1
#*i hex $1.00 $1.eve

#*i hex $1.01 $1. odd

*/

The linker processes the assignment statements and the MEMORY and
SECTI ONS directives.

12-5

12 i960® Processor Software Utilities User's Guide

12-6

The rommer directives appear between the/ * and */ characters and each
rommer-directive line starts with #* (note that only section headers are
changed; no relocation is performed):

move placesthe. dat a section immediately after
.text.

mki mage prepares an image of the data to be programmed
into PROMS.

split divides the image into the two eight-bit-wide

units. Thefirst unit contains even-numbered
bytes (0, 2, 4 ...); the second contains
odd-numbered bytes (1, 3,5 ...).

i hex converts the split images into the hexadecimal
format required for a PROM programming
device.

The $0 and $1 characters represent arguments from the rommer invocation.

Directive Reference

This section describes the rommer directives a phabetically. Note that
example commands are those that you would place in alinker directive
(.1d) file or enter at the rommer command prompt.

ROM Image Builder (rom960)

12

checksum
Computes and stores a

checksum

checksum i mage start-addr end-addr checksum addr [16 | 32]

i mage isthe name of thefilein which the checksumiis
placed.

start-addr is the checksum starting address.

end- addr is the checksum ending address.

checksum addr is the checksum result address.

[16 | 32] isan option argument to specify a 16- or 32-hit

checksum. The default is a 16-bit checksum.

Discussion

To compute a 16- or 32-bit checksum (CRC) over a specified address
rangein the imagefile, use checksum The result appears in the image at
the checksum addr you specify.

A checksum address beyond the end of the image extends the image,
padding any additional intervening bytes with oxf f .

12-7

i960® Processor Software Utilities User's Guide

12-8

Example

The following inserts three successive 32-bit checksums in the image
crctest. Thefirst checksum result is used for the second and the second
result is used for the third.

rom 32767 8

nove hello

nki mage hell o crctest

checksum crctest 0 8191 8192 32
checksum crctest 8192 16534 16535 32
checksum crctest 16535 32766 32767 32

Related Topic
nki nage

ihex
Trandlates an image to

an Intel hexadecimal
format

i hex bin hex-file node

bin isthe name of thefile to be trandated.
hex-file is the name of the hexadecimal output file.
node specifies the hexadecimal address record format

(described below).

ROM Image Builder (rom960)

Discussion

For downloading to an intelligent EPROM programmer, translate a binary
image into either of two Intel hexadecimal formats with i hex. For the
address record format, specify a node asfollows:

model6 specifies a hexadecimal object file format with
extended segment address records. Thisformat is
used on Intel’s 8086 series of 16- or 32-bit
processors, and also required by some PROM
programmers.

mode32 specifies a hexadecimal object file format with
extended linear address records. Thisformat is
used on Intel's iI960® processors.

Example

The following translates a file nametr y into an executable image
nameddhr yst on, splits thedhr yst on image into two parts, and translates
the two parts into new files in hexadecimal format for the PROM
programming device:

nove dhry

nki mage dhry dhryston

split dhryston 65536 16 65536 8 dhryston

i hex dhryston. 00 dhryston. even
i hex dhryston. 01 dhryston. odd

Related Topics

nki nage
split

12-9

i960® Processor Software Utilities User's Guide

map

Reports the section
addresses, section sizes,
and the image size

map infile

infile isthe filename to be placed in ROM.

Discussion

Use map to show how the rommer has restructured the file. The map
directive displays the following on the st dout standard-output device:
e theaddress and size of each file section

« thesize, in bytes, of the projected ROM image

Y ou can use map to display information while building a ROM image
interactively or from adirectivefile.

Examples

1. Thefollowing showsthe. dat a section located in the input file
immediately after the. t ext section:

#*map a. out

Secti on nane Physi cal address Si ze

.text 0x040000000 0x5b90
.data 0x040005b90 0x938

. bss 0x600000000 0x118c

I mage made froma.out will be 25800 (decinmal) bytes
| ong

12-10

ROM Image Builder (rom960)

2. Thefollowing showsthe. t ext section placed at address0 and . dat a
still at 0x40005b90. When created with nki mage, the space between
the sections s filled with zeroes (note the image size):

#*move a.out .text 0xO0
#*map a. out

Section nane Physi cal address Size
.text 0 0x5b90
.data 0x40005b90 0x938

. bss 0x60000000 0x118c

| mge made froma.out will be 1073767624 (decimal)
bytes | ong

3. Thefollowing shows. dat a moved to alocation that is again
immediately after . t ext , producing a smaller image size:

#*nmove a. out
#*map a. out

Section nane Physi cal address Size

.text 0 0x5b90
.data 0x5b90 0x938

. bss 0x60000000 0x118c

| mmge made froma.out will be 25800 (decimal) bytes
| ong

Related Topic

nove

12-11

i960® Processor Software Utilities User's Guide

mkfill

Trangates a COFF file
into a memory image

nkfill object-input image-output fill-character
obj ect - i nput
i mage- out put

fill-character

Discussion

This command translates a COFF executable file into a memory image
containing an image of the program as it would appear when downloaded.

mkimage
Creates an executable
image
nki mage infile inmage [sectionl [section2 ...]]
infile isthe object filename.
i mage isthe converted image filename.
section isthe name of the sectioninthei nfi | e to be

converted into the image.

12-12

ROM Image Builder (rom960)

12

Discussion

This option tranglates a file into a memory image for downloading or
burning into ROMs or PROMs. This directive puts only the raw data of

text-type and data-type sections in the image, without the bss-type section,

and pads any space between the sections with Oxff.

By default, all text and data sections are translated. However, you may
specify sections to trandate in the mki nrage command.

The text-type and data-type section addresses determine the size of the
image. Theimage starts with the lowest-address text-type or data-type
section and ends after the highest-address such section.

Examples
The following trandates the file hel | o to the binary imager onhel | o:
nki mage hello romhello

The following tranglates only the three input sections from thefile:

nkimage file file.image .text .textl foo

The following uses anki mrage command after ar omcommand specifying

the target ROM configuration.
nki mage hello romhel |l o

rom 32767 16 2

Related Topic

nove

12-13

i960® Processor Software Utilities User's Guide

move

Rearranges the sections

nove infile [section { phys-addr | after section }]

infile istheinput filename.

section isalinked section name.

phys- addr is the new memory section physical address.
Discussion

This command is used to reorder file sections for programming. nove
changes the address of sect i on in the object file to the specified physical
address (phys- addr). If section isnot specified, the rommer arranges
sectionswith . data immediately after . t ext . When specifying

sect i on, the physical address may be in hex, or you may use the keyword
“af t er ” followed by a section name. For example:

nove nyfile bigblock after .data
Thenove directive changes only the header informatioimiite, without
relocating any symbols. Useve to prepare a file for theki nage

directive or (for example) to change the physical address for a particular
EPROM.

Themove command writes the changedrtble.

application must contain executable startup code to copy each section that
is moved back to its original address, as defined in the linker directivefile.
Without such executable startup code, the application may execute
incorrectly when downloaded, since inter-section references may no
longer be valid.

@l CAUTION. After theinput file has been modified with move, the

12-14

ROM Image Builder (rom960)

Example

In the following, the first move directive startsthe. t ext section at 16383:

nmove hello .text 16383
Rel at ed Topi cs

Related Topic

map
nki nage

packhex

Compresses a hex file by
repacking the data
records

packhex hex-file

hex-file Name of the hex file to repack.

Discussion

This command compresses a hex file by re-packing the data records. The
hex is converted in-place. This operation should be done before using a
split command.

Example
packhex nyfile

12-15

i960® Processor Software Utilities User's Guide

12-16

Overwrites the image
contents with that of a

patch image infile addr

i mage is the executable binary filename.

infile isthe patch filename.

addr isthe patch starting address in the binary file.
Discussion

To overwrite part of an executable binary file with the contents of a patch
file, use pat ch. Specify the addr ess offset in the binary file where the
patch isto start. The length of the patch file determines how much of the
binary file is overwritten.

Example

The following overwrites codein the pat f i | e file with the contents of the
newbyt e file, beginning at address 1000 of patfil e:

nove hello
nki mage hello patfile
patch patfile newbyte 1000

Related Topic
nki nage

ROM Image Builder (rom960)

1

permute

Rearranges the data or
addressesin a binary
file

pernmute-a infile ord
pernmute-d infile ord

infile

order

outfile

Discussion

er outfile
er outfile

isthe binary filename to be permuted.

isaseries of integers separated by spaces
indicating the order of the bits to be permuted.

is the name of the file containing the permuted
image.

Rearrange the address bits or the data bitsin a ROM image as follows:

To reorder data bits, use per nut e- d. Bits are repositioned within data
items that are the width of the ROM image. Specify the output bit location
for each input bit from the least-significant to the most-significant input bit.

To reorder address bits, use per nut e- a. Bits are repositioned within
32-hit addresses. Specify the new bit location for each address bit from

least- to most-significant

input bit.

In interactive mode, the rommer prompts for the new location of each bit.

Use per nut e- a Or per nut e- d after ar omcommand describing the target
ROM configuration. The per nmut e- a command uses the length and width
specifications from the r omcommand to define the working address space.

12-17

i960® Processor Software Utilities User's Guide

12-18

Examples

1

The following reorders data bits O through 7 int est and placesthe
new imagein bl dr omt

rom 64000 8

nove hell o

nki mage hell o test

pernute-d test 02 46 135 7 bldrom

The following reverses address bits 16 through 31, placing the new
imagein hel | 02:

rom 120000 32

nove hell o

nki mage hell o romhello

pernute-a ronhello 0 1 234567 89 10 11 12 13 14
15 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
hel | 02

Related Topics

nki nage split
rom

rom

Fecifies the image

length and width
rom/ength, wdth, [count]
I ength isthe number of bytesin the ROM image.
wi dt h isthe width of the ROM image, in hits.
count is the maximum number of ROM images.

ROM Image Builder (rom960) 1 2

Discussion

Use this option to specify the length, width, and number of ROM images
before using aper mut e command. Figure 12-3 shows an eight-ROM
memory image and an example of the command required to specify it.

If you specify a count , the rommer issues a warning message for any
ki nage output greater than the expected memory size (in bytes). To
determine the expected memory size, use the formula:

l'ength * count

The per nut e- d command uses wi dt h and per nut e- a uses both / engt h
and wi dt h as the number of bits to be permuted.

12-19

i960® Processor Software Utilities User's Guide

Figure 12-3 Dimensions of a Memory Image

16 Bits Wide

8 Bits Wide

T

1,000 Bytes

4,000 16-bit
ROM Image Words Long

Memory Image

ROM command required to use either the
permute-a or permute-d command:

rom 1000 8 8

LH— Quantity needed to fill the memory image

Description of one ROM
A0123-01

Examples

1. Thefollowing setsthe length to 32767 bytes and the width to 8 bits for
individual ROM images:
rom 32767 8

12-20

ROM Image Builder (rom960)

2. Thefollowing setsthe length to 65536 bytes and the width to 8 hits;
and, by specifying four ROM images of those dimensions, establishes
262144 bytes as the expected image size:

rom 65536 8 4

Related Topics

nki mage
per mut e
sh
Executes a host-system
command

sh conmand

command is the host-systerm command to be executed.

Discussion

To execute acommand on your host system, usesh. When the command
completes, the rommer continues executing.

Examples

1. Thefollowing liststhe current directory on UNIX:
sh ls -1

2. Thefollowing lists the current directory in Windows:
sh dir

12-21

i960® Processor Software Utilities User's Guide

split

Soecifies the output
image sizes

split image mlength mwdth r-length r-w dth nane

i mage isthe binary filename to be split.

m I ength isthe length, in bytes, of the memory image to be
split.

mwidth isthe width, in bits, of the memory image to be
split.

r-length isthe ROM image length, in bytes.

r-width isthe ROM image width, in bits.

name is abase name for the various images produced.

Discussion

To split amemory image into smaller ROM images, usespl i t. Each
output ROM image filename is of the form nane. nm
n indicatesthe vertical position of the ROM image, from o (the
lowest part of the memory addressrange) to (m ! engt h/ r-1 engt h).
m indicates the horizontal position of the ROM image, from 0 (the
first block of r - wi dt h bitsin the m wi dt h-bits-wide data path)
to(mwidth/ r-wdth).
Subsequent per nut e directives use the ROM imager - I engt h and
r-wdth.

Example

The following produces four files named a. nm as shown in Figure 12-4:

nki mage hello a.inage
split a.inmge 262144 32 65536 8 a

12-22

ROM Image Builder (rom960)

Figure 12-4

split Command Example

. a.image As It Is Understood
a.image As It Is Stored

: 32 Bits
8 Bits A
A
0 0 1 2 3
1 4 5 6 7
g 8 9 10 11
4
5 || 262144
7
8
9 0 1 2 3
4 5 6 7 65536
7 8 9 10 11 Bytes

a.00 a.01 a.02 a.03
ROM Images Created

0OSD1701

Related Topics

nki nage
per nut e-d

12-23

Section-size Printer
(gsize960, siz960)

This chapter describes the section-size printer, used for displaying the
sizes of archive members, object-file sections, and entire files.

% NOTE. Before using thistool, make sure your object file or archiveisin
‘ host-endian byte order. To change the byte order, use the cof960/objcopy
converter described in Chapter 3.

Invocation

Invoke the section-size printer as:

[5i 2960 E . il

Hgsi 2960 [-options] filenanes

si 2960 invokes the section-size printer for backwards
compatibility with CTOOL S960 Release 3.5 and
later.

gsi ze960 invokes the section-size printer for backwards
compatibility with GNU/960 Release 2.1 and
later.

options isone or more of the options listed in Table 13-1.

fil enanes isone or more filenames, separated with spaces,

for which the symbol tables are to be displayed.
Y ou can specify complete pathnames.

131

i960® Processor Software Utilities User's Guide

13-2

Table 13-1

gsize960/siz960 Options

Option Effect

displays total size of common symbols.

displays the sizes and addresses in decimal.
displays help information and exits.

Includes unallocated sections in the size calculation.
displays the sizes and addresses in octal.
Suppresses header display.

< T O 5 T a o

displays the section-size printer version and creation date and
continues processing.

v960 displays the section-size printer version and creation date and stops
processing.

X displays the sizes and addresses in hexadecimal.

By default, sizes are displayed in decimal and addresses in hexadecimal.
For example, the following displays the version information and continues
processing:

Si z960 test.o

test.o :

Section Si ze Addr ess
.text 52 0x00000000
.data 4 0x00000034
. bss 0 0x00000038
Tot al 56

NOTE. Withrelease 5.1, the - n option includes ELF . debug sectionsin
the size calculation. Note that using si z960/ gsi ze960 with the - n
option produces output that isidentical to that produced by version 5.0 of
thesizer.

Satistical Profiler (ghist960)

Overview

Figure 14-1

The ghisto60 utility facilitates statistical analysis of the execution behavior
of programs containing debug information. Ghist960 works with:

e b.out, COFF, and ELF files
e big- or little-endian byte ordered files
e IxWorksand MON960 monitors.

The statistical profiler consists of two separate components:

Component Runs On Function

1) ghist960 Host Displays performance data created by the ghist960
reporting run-time library. After profiling is completed, this data
tool is stored in a file that resides on the host.

2) ghist960 Target The target-specific library that is linked with the code
run-time to be analyzed. During profiling, the library collects
library performance data and writes this data to the host.

ghist960 Profiler Environment

application
librar
target Y
host
ghist960
datafile

14-1

i960® Processor Software Utilities User's Guide

14-2

L)

Table 14-1

NOTE. Satistical profiling differs from precise profiling, which is
described in the i960® Processor Compiler User’s Guide

Terminology

Term

Definition

ghist960 library
libhs

libixhs

library variable

host
target
msec
_btext
_etext
IP
TIMER1
TCR1
TRR1
TMR1
IMSK

Target-dependent run-time library (either libhs or libixhs)
MON960 version of the ghist960 run-time library
IXWorks version of the ghist960 run-time library

A variable defined in the ghist960 library that may be
modified by the user (i.e. _buck_size)

Hardware that runs CTOOLS and/or Tornado
Hardware that runs application under test and/or IxXWorks
Milliseconds

Beginning of the application’s text (instruction) section
End of the application’s text (instruction) section
Instruction Pointer

hardware timer 1 (not available on some processors)
Timer Count Register 1

Timer Reload Register 1

Timer Mode Register

Interrupt Mask

How Statistical Profiling Works

Statistical profiling uses a sampling technique that records the IP at fixed
intervals. The recorded IP is correlated with a hit-counter that contains the
number of times the IP has fallen within its range of memory. This range of
memory is referred to as a bucket.

When profiling terminates, each counter will contain a value that represents
the frequency of occurrence that the IP spent within each counter’s bucket.

Satistical Profiler (ghist960) 1 |

If enough samples were taken, these values will be statistically significant
such that they will accurately show where the |P was most of the time.

In the example shown in Figure 14-2, asimple function is assembled and
the resulting assembly occupies exactly 32 bytes. The bucket size for this
exampleis 16 bytes. If the I P resides within the range of 0x0-0x10 during
sampling, the hit-counter for bucketO will be incremented. If the IPis
within 0x14-0x20, the hit-counter for bucket1 will be incremented.

Figure 14-2 Buckets

source assembly

1 void f1 () 0: lda 0x20, g14

2 { 8. nov g14, g0

3 int k; c: nov 0, g14 —| bucket 0

4 for (k=0; k<9; k++) 10: nov 8, g4

5 { 14: subo 1,094,904

6 } 18: cnpi bl e 0, g4, 0x14

8 1} lc: bx (g0) —» bucket 1
20: ret

When profiling is completed, the performance datais transferred to the

host so it can be displayed using the ghist960 reporting tool. If in the

example above, bucketO receives 1% of the program’s total execution time,
and bucketl receives 5%, ghist960 will report something similar to this:

%tine function nane |ine file nane addr ess
1. 0% f1 1 ex.c 0x00000000
5. 0% f1l 4 ex.c 0x00000014

Debugging information embedded within the executable allows ghist960 to
report roughly which lines of C source code were executed most
frequently.

14-3

i960® Processor Software Utilities User's Guide

Parameters that Effect Profiling

The ghisto60 library defines several user-modifiable parameters that

influence profiling operation. The easiest way to manipulate these

parameters is through the use of gld960’s —defsym command line option,
although in certain cases it may be useful to modify _prof_start and
_prof_end in the application’s source code. If you use the —defsym
command line switch, the symbol must be preceded by two underscores. If
you are using the symbols directly in source code, they must be proceeded
by only one underscore.

While usage of library parameters differs slightly depending on which
version of the library you are using, all parameters are of type integer and
must be positive in value. Refer to tables 14-2 and 14-3 for MON960 and
IXWorks specific usage, respectively.

Table 14-2 MONO960 Library Parameters (libhs)

Defsym Default Possible Values Effect

__buck_size* 0x40 >0 Number of text space bytes per
bucket.

_ timer_freq 0x2 Timer interrupt frequency. Use

one of the following settings. (Any
other setting resets the default.)

0x1 500 mSec
0x2 1 mSec
0x3 2 mSec
0x4 5 mSec
__prof_start* _btext >=_ ptext and The low address in the range of
<_prof_end instruction addresses to profile.
__prof_end* _etext <=_etextand The high address in the range of
> prof_start instruction addresses to profile.

14-4

Satistical Profiler (ghist960)

L)

Table 14-3

_heap_size 0x2000

(8KB)

Memory allocated for heap space
(MONO960). Heap space is where
the raw profile data is kept for
later dumping to the host. Default
is usually insufficient for profiling.
To determine the extra heap size
you need for profiling, use the
formula:

_heap_size += ((__prof_end -
__prof_start) / __bucket_size) * sizeof
(int)

*NOTE. Changing this parameter directly affects heap space

requirements. See _heap sizefor details.

IXWorks Library Parameters (libixhs)

Defsym Default / Possible Values Effect
Typical
__buck_size* none/ 2” where n>=3 Number of text space bytes per
0x10 bucket.
<Oxffff
__timer_freq none/ >0 Timer interrupt frequency.
0x2710 Expressed in the number of
times to sample in one second.
__prof_start* none Must be first The low address in the range of
symbol in .text instruction addresses to profile.
section.
__prof_end* none Same as The high address in the range of
MON960 instruction addresses to profile

NOTE. There are no default values for libixhs. All values must be

supplied.

14-5

i960® Processor Software Utilities User's Guide

Bucket Size (__buck_size)

The bucket size determines the granularity of measurement. A hit-counter

is allocated on the application’s heap for each bucket, so smaller bucket
sizes translate into more heap memory usage but better measuring
accuracy.

In reality, a bucket may cross function boundaries as shown in figure 14-
3b. Situation (b) occurs more often than situation (a). When the IP shown

in figure 14-3b is sampled, the hit-counter for bucket b0 will be
incremented. Ghist960 will report a result that makes function f1 look like

it has received more IP hits, because the counter is associated with the first
line of code.

For libixhs, the bucket size must be a power of 2 and larger than 4.

Figure 14-3 Buckets Crossing Function Boundaries

func bucket func bucket
_prof_sart P b f1 bO
b2
f2 b3 P P 2
b4
prof end — P = =
(€Y (b)

14-6

Satistical Profiler (ghist960) 1 |

Timer Frequency (__timer_freq)

Sampling is achieved by using a hardware timer. Depending on the
hardware configuration, the timer used may either be the i960® processor’s
TIMERL or an off-chip peripheral.

The usage of __timer_freq depends on which library you are using. With
libhs, the only valid values are 0x1-0x4. With libixhs, the value of
__timer_freq is the number of times to sample in one second. The range of
valid __timer_freq values is given by :

.. busClkMhz* 10°
© timer _freg
Where busClkMhz is the speed of the CPU clock in megahertz.

0

< fFff ffff,,

NOTE. Profiling requires complete control of the target board’'stimer. If
the program being profiled uses the timer, the profile data is incorrect or
misleading. You must disable all timer accesses

Profiling region (__prof _start and __prof_end)

Most often, the entire program will be profiled. It is also possible to select
aregion for profiling by modifying __prof_start and __prof_end. Code that
does not reside within the bounds of __prof_start and __prof_end will not
be profiled.

When developing for the MON960 environment (libhs), the low-level
library (libll) defines _prof_start and _prof_end to _btext and _etext,
respectively. In contrast, when developing for IXWorks, _prof_start and
_prof_end must be set explicitly. Furthermore, libixhs places special
restrictionson __prof_start, which are described here in detail.

There are four possible scenarios in which to select code for profiling, as
shown in Figure 14-4. Three methods for modifying __ prof_start and
__prof_end are presented in table 14-5.

14-7

i960® Processor Software Utilities User's Guide

Figure 14-4 Four Scenarios for Selecting Profiling Regions

_btext —pp

_etext —ppf

_btext —ppy

_etext —ppf

text

.data

@

text

.data

©

_prof_start

—_prof_end

_prof_start

—_prof_end

_btext —pp
text

_etext —pp
.data

- prof_start

- prof_end

(b)

_btext —pp
text

_etext —pp]
.data

_prof_start

- prof_end

(d)

Table 14-4 Preferred Methods for Modifying _prof_start and _prof_end

Method Works with
Figure Region to profile _prof_start _prof_end |libhs libixhs
14-4 (a) Between two selected 1,2 1,2 .
addresses
14-4 (b) Selected address to 1,2 3 .
end of .text section
14-4 (c) Beginning of .text 3 1,2 . .
section to selected
address
14-4 (d) Entire .text section 3 3 . .

14-8

Satistical Profiler (ghist960)

Table 14-5 Methods of Modifying __prof_start and __prof_end

method

description

1

The defsym command line switch can be used to assign
values to __ prof_start and __prof_end. The —defsym
command line switch can be presented to the compiler of
linker. Symbols must be preceded with an extra underscore
(i.e. __prof_start).

In the following example, code will be profiled between the
starting addresses of main and up to the starting address of
endapp (endapp itself will not be profiled).

gcc960 [...] —defsym __ prof_start=_main \
—defsym __prof_end=_endapp

_prof_start and _prof_end dummy place-holder functions
may be defined in the same file within the application. Code
between these dummy place-holders will be profiled.

void _prof_start() {}
(functions to profile)
void _prof_end() {}

The dummy place-holders _prof_start and _prof_end are
defined in their own separate files. The files are positioned
around the files containing functions to profile on gld960’s
command line, and contain no other code except the
dummy place-holders.

profstart.c contains:
void _prof_start() {}

profend.c contains:
void _prof_end() {}

The files are then linked in the following manner:

gl d960 [...] profstart.o (profiled objects)
prof end. o (other objects)

This is the recommended approach to guarantee that
_prof_start is the first symbol located in the .text section.

14-9

1 I i960® Processor Software Utilities User's Guide

% NOTE. For libixhis,_prof_start must be the first symbol placed in the
& .text section.

Figure 14-4 shows how an IxWorks DDM object can be profiled. ‘DDM
objects’ will be profiled because they are betweganof_start and
_prof_end. However, ‘other objects’ will not be profiled.

Figure 14-4 DDM Memory Layout

application

< rof_start
profstart.o prov

_prof_start()

DDM objects

f_end
profend.o prat_en

_prof_end()

other objects ...

Resource Requirements

The library requires the use of one hardware timer and one hardware-
generated interrupt. The specific timer and interrupt used are platform and
hardware configuration dependent.

14-10

Satistical Profiler (ghist960) 1 |

Table 14-6 Required Resources

Resource MON960 IXWorks
Hardware Timer TIMER1 Rx TIMER1
Interrupt Vector 11 Oxe2

Library Initialization

MON960

When developing code for use with MON960, the low-level library (libll)
islinked in by default. The start-up code defined in libll automatically calls
_init_profile() and _term_profile(), requiring no intervention from the user.

IXWorks

When developing for IxXWorks, the MON960 C low-level library is not
linked with your application. In addition, IxXWorks uses incremental
linking. Therefore, _init_profile() and _term_profile() must be explicitly
called by either the shell or the application to start and end profiling,
respectively.

When _init_profile() iscaled, thefollowing sequence occurs:

1. Thecurrent interrupt vector for TIMER1 is saved

2. New vector for TIMERL1 is programmed

3. TCR1, TRR1, TMRL1 are modified.

4. TIMER1 interrupt is enabled (IMSK modified)

When _term profil e() iscaled, thefollowing occurs:
1. Theold interrupt vector is restored
2. TMRlisreset

14-11

1 I i960® Processor Software Utilities User's Guide

[NOTE. TCR1, TRR1, and TMR1 are not restored to their original values
‘ when_term profile()iscalled

Invocation

Invoke the statistical profiler with:

ghi st960 [option]... program][data_file]
option isone of the optionslisted in Table 14-1.
program identifies the application (object file) for which

you are creating the report.

data_file names the execution profile datafile, which can
be in ASCII (*.asc’) or binary (‘.dat’) form. The
file must have an ‘.asc’ or ‘.dat’ extension.

The ghist960 tool processes the object file by:

1. Building an internal database of function entry and line number
symbols.

2. Determining data file format type by file’s extension.

3. Processing the profile data, matching "bucket” hit counts to their
associated symbols and line number entries. A bucket is a range of
addresses. The number of address bytes in the bucket (bucket size)
determines the range of addresses corresponding to a bucket.

4. Printing the internal database for each symib@ entry, which
includes:

« the percentage of hits for this particular symbol/address range
« the function name associated with the symbol

« the source file line number of the symbol

« the file where the symbol resides

» the address of the symbol

14-12

Satistical Profiler (ghist960)

Optionally, you can use the n option to obtain the actual number of hitsin
the address range.

Table 14-7 ghist960 Options

Option

a

v960

Effect

prints all buckets with one or more hits. (Normally, only buckets
with 1% or more of the hits are printed.)

prints ghist960’s internal symbol table and the standard data.

tallies function information. Counts the number of hits for each line
in a function and associates the sum with line zero of the function.

displays help output and exits.

prints the number of hits for each bucket, in addition to the standard
data.

suppresses the printing of miscellaneous header and footer
information and format lines.

writes version information to stdout and continues.
writes version information to stdout and exits.

Using ghist960

Statistical analysis using ghist960 is a multiple step process. Generally, the
procedureis dightly different whether you are using the MON960 or the
IXWorks library.

% NOTE. When compiling the application to be analyzed, it is best to specify
& the —g (debug) flag for symbolic debugging allowing ghist960 to report
line numbers.

14-13

i960® Processor Software Utilities User's Guide

Table 14-8 Procedure for Profling Under MON960 and IxWorks

Phase Step Instruction MON960 IXWorks

Compile 1 Define profiling region. optional required

/ Link Assign values to
_prof_start
_prof_end

Compile with —g flag recommended recommended

Link with run-time required required
library (libhs) (libixhs)
4 Modify library optional required
parameters with Assign values to
‘defsym’ switch timer_freq
_buck_size
Run 1 Download app to be required required

profiled to target

2 Initialize library automatic required
Call _init_profile()
from IxWorks shell

3 Run program with required required
normative data

4 Terminate profiling automatic required

Call _term_profile()
from IxWorks shell
and redirect output
to file with ‘.asc’

extension.
Analysis 1 Invoke ghist960 required required
% NOTE. Because the IX\Works version of the library uses stdio, Virtual 1/0
& must be enabled by the shell.

14-14

Satistical Profiler (ghist960) 1 |

Description of File Formats Emitted by the Library

After _term_profile() is called, performance data will be sent to the host. If
using libhs, a binary ‘.dat’ file will automatically be created in the directory
mondb was invoked in. If using libixhs, the data is sent to stdout, which
must then be manually redirected to a file on the host. It is important that
this file has an ‘.asc’ extension, indicating that it is in ASCII form.

Each version of the library has generally the same format:

Figure 14-5 Data File Format

bucket size

[P/ hit Pair

[P/ hit Pair

Depending on which version of the library you are using, the file will be
stored in either ASCII or binary format. Ghist960 distinguishes the file’s
format by it's extension.

Table 14-9 File Formats Generated by the ghist960 Library

Operating System Format Extension
IXWorks ASCII .asc
MON960 binary .dat

14-15

i960® Processor Software Utilities User's Guide

Binary Data Format

The binary format stores integersin little-endian byte-order. Thefirst
integer is the bucket size, followed by alternating sequences of IP
addresses and hit counts. The following table describes this format.

Table 14-10 Binary Data Format

Bytes Declaration Name Description

0-3 int bucket size The size of each bucket used during
profiling. See the library variable
‘_buck_size’ for more information.

4-7 int IP First IP value
8-11 int hit counter Hit-counter associated with first IP.
12-15 int P Second IP value
16-19 int hit counter Hit-counter associated with second
IP.
int

ASCI| Data Format

The ASCII file format stores and I P followed by a hit-count on each line.
The IP and hit-counter are separated by a space and followed by a new-
line. The exception to thisis the first linein the file, which only contains
the bucket size. All numbers are represented as hexadecimal, but are not
preceded by ‘0x'.

Table 14-11 ASCII File Format

Line Contents (separated by a space)

0 bucket size

1 IPO #hits
2 IP1 #hits
n

14-16

Satistical Profiler (ghist960)

Example Usage of ghist960

The following example is a simulation that keeps the IP busy in severa
functions. The algorithm defined in the function run_simulation is designed

to call a ‘bin’ function with a frequency that corresponds to a normal
distribution: binl and bin13 should have relatively few hits whereas bin7
should get most of the hits. The simulation is run 1000 times.

[* exanmple.c */

#def i ne DELAY 5000
#define WAIT { volatile int i; for (i=0; i<DELAY; del ay++

{1}

void binl () { WAIT}
void bin3 () { WAIT}
void bin5 () { WAIT}
void bin7 () { WAIT}
void bing () { WAIT}
void binll () { WAIT }
void bin13 () { WAIT}

void run_sinulation (void)

int |evel, pos=6;

for (level = 1; level <= 5; level++) {
if (rand() %2)
pos- - ;
el se
pOS++;
}
switch (pos)
{
case 1 : binl(); break;
case 3 : bin3(); break;
case 5 : bin5(); break;
case 7 : bin7(); break;
case 9 : bin9(); break;
case 11 : binll(); break;
case 13 : binl3(); break;

14-17

i960® Processor Software Utilities User's Guide

Table 14-12

void main ()

{
int sim
for (sime0; sim< 1000; sim-+)
run_si mul ation();
}

/* End of example.c */

For this example, a hypothetical scenario for profiling is created.

Example Parameters

14-18

Library parameter Value Explanation

_timer_freq 0x01 Set sampling rate at 500 mSec.

_prof_start binl Start profiling at the address where
_binl is defined.

_prof_end run_simulation end profiling up to the address

where run_simulation is defined.

The gcc960 command line will look as follows :

gcc960 —AJF —Fcoff —g —Tmcyjx —lhs example.c\
—defsym __ prof_start=_bin1\
—defsym __prof_end=_run_simulation \
—defsym ___buck_size=0x1 —o example

After example.c has been successfully compiled and linked, it must be run
on the host. If using MON960, this could be done as follows :

mondb example

After the application has completed execution, ghist.dat will reside on the
host. To view the results, invoke ghist960:

ghist960 —a example ghist.dat

Satistical Profiler (ghist960)

The following output is representative of the profiling session (values may

change dightly when example isre-run.)

Gcc 80960 History Profiler V3.0

Readi ng data from ' ghist.dat’

Done.

Profile of time spent

in program’exanple’.

1947 sanpl es taken w th bucket size of 64.

33 |ine nunbers found.

%tine function name |ine file name addr ess
33. 4% bi n7 7 bins.c 0xa00088d0
28. 7% bi n5 6 bins.c 0xa0008890
17. 1% bi n3 5 bins.c 0xa0008850
14. 8% bi n9 8 bins.c 0xa0008910
3.3% bi n1 4 bins.c 0xa0008810
2.6% bi n11 9 bins.c 0xa0008950
Figure 14-6 Hit Frequency for Bin Functions
40
2 35
= 30
S 25
3 20
o
5 15
8 10
“ 5
0 /1 /
binl bin3 bin5 bin7 bin9 binll
function

14-19

Sripper (gstrip960, str960)

The stripper removes symbol-table and line-number information from your
files. In most cases, you will want to use the stripper after debugging to
reduce the code size by removing debug symbols.

L)

NOTES.
— The stripper overwrites the input file with the stripped file.
— You cannot link or symbolically debug a stripped file.

Invoke the stripper as:
G5t r 960

Hgstri D%OH [-option]... filenane...

str960 invokes the stripper for backwards compatibility
with CTOOL S960 Release 3.5 and |ater.

gstrip960 invokes the stripper for backwards compatibility
with GNU/960 Release 1.2 and later. On
Windows hosts, the invocation command is:
gstrip96.

option isone or more of the options listed in Table 15-1.
Use the options only for stripping COFF or ELF
files. For b.out files, specify no options.

filename isone or more files to be stripped.

NOTE. To strip all debugging information for COFF, b.out, or ELF,
specify no options. Also, you can interleave the options and filenames in
any order.

151

i960® Processor Software Utilities User's Guide

15-2

Table 15-1

To strip afile while preserving and re-indexing the relocation entries for
incremental linking, use ther option. Without r, the relocation
information inhibits the stripper.

When you use the stripper on an ELF/DWARF file, all sectionsthat lack
the SHF_ALLGC bit in the section header table are removed from the output
file. The one exception to thisruleisthe. shst rt ab section, which is not
removed.

str960/gstrip960 Options

Option Effect

a strips all symbols. This is the default.

b strips the local symbols and line numbers only, retaining the block
information.

C strips CCINFO only.

h displays help information and exits.

I Stips line numbers only.

r strips files containing relocation information, revising the remaining
relocation indexes. External and static symbols remain.

\% displays the stripper version number and the date and time the
stripper was created, then continues processing.

v960 displays the stripper version number and the date and time the
stripper was created, then stops processing.

X strips all except static and external symbol information.

z suppresses writing a time-stamp in the COFF header file.

Partial stripping is supported by theb, C,1,r and x options. For ELF
files, these options are equivalent: Both remove debugging information
from the output file. All sections named . debug* are removed from the
output file, but the file remains rel ocatabl e because both the . st rt ab and
. rel * sections are retained.

Assembly Language Converter
(xlate960)

The xlate960 program converts assembly language code from 80960 core
processors (e.g., 1960 Cx, Jx, and Hx processors) to its COREOQ (e.g.,
80960Rx) equivalent. xlate960 performs both instruction translations and
addressing-mode translations. Instruction translation occurs when the target
architecture does not support a translatabl e instruction from the source
architecture (e.g., movt). Addressing mode tranglation occurs when the
target architecture supports a restricted form of an instruction from the
source architecture (e.g., cal | x). Table 16-1 liststhe instructions
converted by xlate960.

Table 16-1. Instructions Translated by xlate960

addi ldat remo
addi <cc> Idibt scanbit
balxt Idist spanbit
bxt ldit stt
calljxt Idobt stibt
callxt Idost stist
cmpdeci Idgt stlt
cmpdeco o] stobt
cmpinci modac stost
cmpinco modify stqt
concmpi movl sttt
concmpo mov(q subi
eshro movt subi<cc>
extract notor test<cc>
fault<cc> remi xnor

Idt

Notes:

T indicates addressing-mode translation
T indicates addressing-mode and instruction translation
all other instructions support only instruction translation

16-1

1 i960® Processor Software Utilities User's Guide

% NOTE. Make sure that your code assembles without error for an 80960
‘ core processor before converting with xlate960.

Invocation

Command-line Invocation

To invoke xlate960 from the UNIX command shell or a Windows DOS
prompt, use the syntax:

x| ate960 [options] infile

x| at €960 Invokes the converter.

options Represents any of the optionslisted in Table 2.

infile Specifies the name of the assembly file to
convert.

16-2

Assembly Language Converter (xlate960)

Table 16-2. xlate960 Options

Option Effect

A arch Specifies output architecture type. arch can be one of: RP,
RD, RM, RN, COREQ. Default type is RP.

e Displays translation compatibility errors to the screen

matching those inserted in the output file.

h Displays help information. xlate960 also displays this
information if you run the program without specifying the input
file and any other options.

I, longcalls Uses cal | x instead of cal | instructions for translation
routine library calls.

-0 outfile Specifies output filename. If this option is not given, xlate960
replaces an extension of . s or .as with . x| t, or appends
. XI't to any other filename.

\% Displays version information and continues processing.
v960 Displays version information and exits.
w Displays translation compatibility warnings to the screen

matching those inserted in the output file.
X Emits warnings instead of errors for unrecognized instructions.

Invocation Through the Assembler

Thetrandlation utility can also be invoked through the assemblers

(gas960e, gas960c, gas960, or asm960) by using the assembler -t option.

When invoked in this manner, xlate960 uses the assembler’s architecture
specification { A option) as its output target architecture. If errors occur
during the translation process, the assembler does not attempt to process
the xlate960 output file. This includes instances where the translator
output file requires manual adjustments.

16-3

i960® Processor Software Utilities User's Guide

16-4

Invocation Examples

The following command convertsinstructionsin nyfile.s to80960Rx-
compliant instructions, placing the output into thefile nyfile. xIt:

xl ate960 nyfile.s

The next example shows how to run xlate960 from the assembler
command line, generating an 80960Rx-compliant object file nyfil e. o:

gas960e nyfile.s -t - ACOREO

Output File Format

The output file produced by xlate960 isidentical to the input file except for
the instances where trandation occurred. Each instruction that was
trandated is replaced with a sequence of the following format in the output
file

#x| at e- begi n original instruction
<trangdlation errors or warnings, marked by x| at e- err or x! at e- war n>
<trand ation routine>

#x| at e- end

For example, given thisinput file:

eshro 10, r5, r5

mov r5, gl0

xlate960 produces the following output file:

#x| at e- begi n eshro 10, r5, r5

#xl ate-err “Fill in register for EQ”

shro 10,r5,E0

shlo 22,r6,r5

or r5,EQ0,r5

#xlate-end

Assembly Language Converter (xlate960)

mov r5, gl0

User Interaction

Translation Errors

Certain instruction translations may require further action by the user. For
example, addressing mode trandl ations often require a scratch register to
hold intermediate calculation results. If the translator cannot determine an
unused register for this purpose, it emits a tranglation error into the output
file. All trandation errors are marked with a comment of the form:

#x| ate-err Error nessage

Y ou can display error messages on the screen by using the - e switch. If
any tranglation errors occur, the translator displays a message similar to
this one at the end of translation:

xlate960: Output file ‘t.xIt’ requires further manual
translation.

It is the user’s responsibility to edit the output file and remove the error
conditions before continuing with code migration.

Translation Warnings

Whereas translation errors indicate invalid output, translation warnings
indicate more subtle incompatibilities, those that are less likely to affect the
compatibility of the output code. An example of this would be a translated
code sequence that does not maintain the same faulting behavior as the
original code. When the translation utility determines that such a condition
exists, it emits a warning into the output file of the format:

#x| at e-war n War ni ng nessage

16-5

i960® Processor Software Utilities User's Guide

16-6

Y ou can display warning messages on the screen using the - w switch. You
should also examine translation warnings before continuing with code
migration.

Known Limitations

xlate960 is unable to trandlate dot-relative expressions in some instances.
For example, given the following code fragment:

bge . +12

| da 10(r4)[g5*4], gl0

mov r5, r6

The original intent isthat the | da instruction is skipped when the AC
register condition code indicates a greater than or equal to condition.

Because of the line-by-line nature of the trandator, however, this codeis
tranglated into the following:

bge . +12

shlo 2, g5, g10
addo gl0, r4, glo0
| da 10(gl10), gl10

mov r5, r6

Notice that the bge instruction branches into the middle of the trandlation
routine instead of branching around it. These conditions can be avoided by
using good programming practices such as creating a label for the target of
the bge instruction in the above instance.

Linker Command Language

Introduction

The linker command language lets you control the linking process. You

can use the linker command language to:

» Define and alocate memory.

« Specify filesand libraries to be linked.

» Group sectionsin memory.

¢ Placeinput files input sections (the smallest relocatable pieces of
object files) into output sections (sectionsin linker output files).

* Resolve globa symbols to absolute addresses.

» Calculate checksums.

The linker command language consists of keywords called linker
directives. These directives are placed in linker directive files, which are
also known as link scripts and configuration filesin some environments.
Linker directive files typically use the extension . | d. Y ou specify linker
directive files when you run the linker, either directly or indirectly (viaa
compiler invocation).

Most of this appendix is devoted to a description of the linker directives.
The last section of this appendix, provides some details on linker directive
files and sample linker directive files. (The toolset includes linker directive
files for various common i960® processor evaluation boards.)

Before using the information in thenker Directives Reference section,
you should be familiar with the information in the next section, which
discusses other directive file elements, such as expressions and operators.

A-1

i960® Processor Software Utilities User's Guide

A-2

Expressions and Operators

Table A-1

Y ou can use global symbols, constants, and C-language operatorsin
expressionsin linker directive files. Names can contain uppercase or
lowercase |etters, numbers, dollar signs ($), and underscores (_). All
numbers are long integers. Asin C, constants are in decimal format unless
preceded by 0 for octal or 0x for hexadecimal.

The vaue of asymbol corresponds to the value in the symbol table after
thelink is complete.

Table A-1 shows the operatorsin order of precedence. Operators on the
same level have the same precedence and are processed as encountered.

Order of Precedence for Operators

Precedence Operators Associativity
1 (highest) I - ~ (unary) left
2 * | % left
3 + - left
4 >> << left
5 == I= > < <= >= left
6 & left
7 [left
8 && left
9 I left
10 ?: right
11 (lowest) &= *= |= += -= /= right

To define symbols and assign values to them, use assignment statements
with the following syntax:

synbol [op] = expression,
symbol isthe symbol name.

op isone of the operators &, *, |, +, -,or /. Not
all assignments require an operator.

Linker Command Language

= is the assignment operator.

expressi on isavalid expression. For example:
start +10

NOTE. Thefinal semicolonisrequired for all assignment statements.

Assignment statements are processed in the order they are input to the
linker and are evaluated after allocation. However, for symbols used in the
expr essi on, the evaluation addresses reflect the symbol addresses in the
output object file. Subsequent symbol references access the latest assigned
values.

For conditional statements, use the following C syntax:

condition ? t-expr . f-expr;

condi tion evauatesto true (1) or false (0). The question
mark (?) isrequired.

t-expr is evaluated when the condi t i on evaluates to
true.

f-expr is evaluated when the condi t i on evaluatesto
false. Thecolon (:) separatesthe f - expr from
thet - expr.

i960® Processor Software Utilities User's Guide

Linker Directives Reference

L)

Table A-2

Use linker directives to:

¢ Configure your target memory.
* Includelibrary files and other directive files.
¢ Providethe start-up routine.

NOTE. Inthissection, the curly braces({ and}) are part of the
directive syntax and must be entered as shown. Square brackets
([and]) and elipses(. . .) indicate optional and repeatable elements.

Linker Directives

Directive
ADDR
ALIGN

CHECKSUM
DEFINED

ENTRY
[NOJFLOAT

FORCE_COMMON_

ALLOCATION
HLL
INCLUDE

Operation
returns a non-relocatable section address.

assigns non-relocatable values to symbols. This
operation is different from the ALIGN keyword of
the SECTIONS directive. This option is
synonymous with NEXT.

generates a checksum for the bus confidence test.

returns whether a symbol is defined in the global
symbol table.

specifies the first executable instruction address.

specifies whether to use the extended-arithmetic
and floating-point libraries.

forces allocation of space for common symbols,
even for non-final (relocatable) linking.

specifies the high-level support libraries.
locates and processes the specified directive file.

continued [J

Linker Command Language

Table A-2

Linker Directives (continued)

Directive
INPUT

MEMORY

NEXT
OUTPUT

OUTPUT_ARCH

PRE_HLL

SEARCH_DIR
SECTIONS

SIZEOF

STARTUP
SYSLIB
TARGET

Operation

provides backward compatibility with GNU R2.0.1
(required in that release for naming linker input files
inside a directive file). Later versions of the linker
allow naming input files without using the INPUT
directive.

specifies the available target memory and defines
configured and unconfigured memory.

synonomous to ALIGN.

names the output file.

specifies the target 80960 architecture for the
current link. Overrides $G960ARCH and is

overridden by the A linker option. Default
architecture is KB.

Lets the user specify libraries that are processed
immediately before the high-level language libraries
specified with the HLL() directive.

extends the library search path (like L dir).

defines the contents, configuration, and location of
the output sections.

returns a section size.

specifies the first file to be linked.
specifies the low-level support libraries.

uses the search path to find the specified directive
file, with the same effect as the T option.

MEMORY: Configuring Memory Regions

Use the MEMORY directive to:

e Specify the target-memory size.

« Designate configured and unconfigured memory regions.
» Prepare memory regions for specific sections.

A-5

i960® Processor Software Utilities User's Guide

Omitting MEMORY configures asingle RwKiI region from 0x0 through
Oxffffffff.

The syntax is:
MEMORY {
nanme [(attr)] : origin = expr, length = expr
[. . .]
}
nane isasymbol for an address range.
(attr) isone or more of the attributes listed in
Table A-3. The parentheses are required when
you specify at t r.
origin is akeyword assigning the region starting
address. Y ou can abbreviateorigintoorg oro.
Use either a space or acommato separate
originandlength.
I engt h isakeyword assigning the region size, in bytes.
You can abbreviatel engthtolenorl .
expr isadecimal, octal, or hexadecimal expression in

C syntax.

NOTE. When you prepare memory regions for sections or groups with
(attr),the MEMORY attribute list must exactly match the corresponding
SECTI ONS attribute list. Omitting the attribute list gives the memory
region the RWKI attributes.

Linker Command Language

Table A-3

Memory and Section Attributes

L)

Attribute Characteristic

R indicates a readable region.

w indicates a writable region.

X indicates an executable region.

I, L indicate a region that can be initialized.

NOTE. Specifying more memory than is actually contained in your
system causes a fatal error.

For more information on assigning sections and groups to memory regions,
see the SECTIONS: Defining Output Sections section.

Examples

1. Thefollowing example prevents any code from being located in the
first 0x10000 words of memory:
MEMORY {
valid : org = 0x10000, len = Oxffff0000
}
2. Inthefollowing example the largest configured region is 0x10000
bytes:

MVEMORY {
menl: o = 0x00000 | = 0x02000
men2: o = 0x40000 | = 0x05000
men8: o = 0x20000 | = 0x10000
}

Default Linker Allocation

Theterm allocation refers to the process the linker uses to locate input
sections into output sections and then to assign the output sections to actual
memory addresses.

A-7

i960® Processor Software Utilities User's Guide

Omitting a SECTI ONS directive puts all input sections with the same name
in an output section of that name, in the order shown below. For example,
linking several object files, each containing the . t ext , . dat a, . nysect,
and . bss input sections, creates the combined . t ext , . dat a, . nysect ,
and . bss output sections. The linker allocates the output sectionsin the
following order when a SECTI ONS directive is not supplied:

* .text a thelowest available address

e other text-type sections after . t ext

» the. dat a section after all the text-type sections

e other data-type sections after . dat a

« other types of sections after all the text-type and data-type sections

e . bss after al other sections

If you provide a SECTI ONS directive, the linker first locates any sections
you specify, then puts unassigned sections into suitably configured
memory on afirst-fit basis, keeping groups intact.

Y ou should carefully study the link map after you link your executable. If
you do not like the arrangement, use the techniques discussed below to
give the linker explicit directions on how to alocate your application. You
can usethe v linker option to display the order in which it allocates output
sections and the addresses it chooses for the sections.

SECTIONS: Defining Output Sections

Use the SECTI ONS directive to:

» combine the input sections into output sections
* locate the output sectionsin memory

» createandinitialize symbols

e initialize unassigned memory

» locate the entry point

Linker Command Language

The syntax is:

SECTI ONS {
[GROUP [addr-spec]: {] # opens an optional GROUP bl ock
o-section [addr-spec] [ns-type]: {
[st at enent s]
Y} [=fill] [>memattr]

[...]
[} [mremattr]] # cl oses the optional GROUP bl ock

[..-]
}

GROUP specifies sections to be treated as one unit. See
Table A-4.

addr - spec isastarting address. For more information on this
subject see the description for the B and T section
start address optionsin Chapter 7.

o-section defines an output section. The colon isrequired.

ns-type is the DSECT, NOLOAD, or COPY nonstandard type
(these may have optional parentheses).

st at enent s describe the section contents, including
filenames, input-section names, keywords (listed
in Table A-4), assignments, and other
expressions (described in the Linker Command
Language section).

The braces are required, even with no statements.
An empty output-section definition contains all
otherwise-unallocated input sections with the
same name (o- sect i on) as the output section.

fill isatwo-byte initialization value for spaces
between input sections in the output section.

i960® Processor Software Utilities User's Guide

A-10

L)

memattr specifies amemory region either by name or by
attribute, as described in the MEMORY:
Configuring Memory Regions section. The > is
required. For alist of the attributes, see
Table A-4.

NOTES. Specify a starting address or a memory region (or neither), but
not both. Conflicting group and section specifications cause syntax
errors.

In a SECTI ONS directive, you can use the keywords summarized in
Table A-4.

Table A-4 SECTION Keywords

Keyword Operation

ALIGN returns the next address that fits the specified boundary.

BYTE puts a byte value at the current address.

COMMON locates uninitialized data.

COPY copies output-section data to the output file without
relocating the section or allocating any memory.

CREATE_OBJECT_SYMBOLS creates a symbol for each input file.

DSECT creates an empty section, allocating no memory (but
processing contained symbols).

ENTRY locates the entry point.

FILL specifies the value used to fill gaps in an output section.

GROUP specifies sections to be treated as a unit.

LONG puts a 4-byte (word) value at the current address.

NOLOAD allocates memory and locates the output section, but
copies no data to the output file.

SHORT puts a two-byte (half-word) value at the current address.

Linker Command Language

The sample below shows a SECTI ONS directive where all . t ext , . dat a,
and . bss sections are allocated to DRAM.

SECTI ONS

{

. text

{

} >dram

.data :

{

} >dram

. bss :

{

} >dram

}
Combining Input Sections Into Output Sections

By default, the linker combines sections as follows:

e Combineal input sections of each name together into one output
section with the input-section name. In each output section, sequence
the input sectionsin the order encountered in the input files.

Y ou can build an output section from specific input sections. List the input
filenames and sections in an output-section definition as:

[filenane] ([i-sections])
filename isan input filename.

i-sections iS one or more input-section names, separated
with commas or spaces.

Y ou can use the wildcard character (*) for the filename. For example:
*(.text) specifiesal inputfile. text sections.

A-11

i960® Processor Software Utilities User's Guide

A-12

Common Sections (COMMON)

The term common section refers to global uninitialized variable space.
The following are examples of common variables:

int x,y[20];

With respect to impact on externa linkage, thistermis used exactly asitis
in the FORTRAN programming language. COMMON symbols are
overridden by alarger definition of the same name, or by a definition that
isinitialized. For example:

int x; defined in x.0
doubl e x; definediny.o
char x="a’; defined in z.o

would each override each other resulting in aglobal variable named x that
isaninitialized character variable. To designate an output section for
common sections of input files, use the COMMON keyword anywhere in an
output-section definition. To include the common symbols from specific
input sections, use COVMMON after the input-section statement. For example:

f 0o. o(COVMMON) /* COMMON section fromfoo.o */

Similarly, the wildcard can be used:
(COWDN) / Place ALL COWON sections here. */

covvoN tells the linker where to locate variables not assigned to another
section. It can refer to all such variables or just to the unassigned variables
from specific input files.

Y ou can list the input filesin the output symbol table. To create a symbol
for each input file in an output section, specify CREATE_OBJECT_SYMBOLS
at the beginning of the output-section definition, after the opening brace:
o-section [addr-spec]: { CREATE_OBJECT_SYMBOLS

{ [statenents] }

}

Linker Command Language

Notethat * (secti on_nanme) and[secti on_names] mean that if any
input sections named sect i on_nane exist, and are not already placed in an
output section, place them in this output section. For example, the
following code produces an error if bar . o isthe only input object file.

SECTI ONS {
foo {bar. o}

junk @ { *(COMVON) }
}

However, the following example does not produce an error because asit is
evaluating * (COWON) , bar . o(COWON) isavailable.

SECTI ONS {

junk : { *(COMMON) }

foo : { bar.o }

}

Files and sections are bound top to bottom, and left to right in linker
directivefiles.

Splitting COFF Output Sections

The common object file format (COFF) allows only 65535 line-number
entries and 65535 relocation entries for any section within an object file.
Thelinker creates additional output sections whenever adding another
input section to an existing output section overflows the line number entry
table or the relocation entry table.

To split asection, the linker:

» creates anew section with the original section name, starting with the
first input section that does not fit completely in the original section.

e assignsanew name to the original output section by appending a
number to the original section name, truncated as necessary to limit the
new section name to eight characters.

For example:

e Splitting the . nybgt xt section once assigns the name . nmybgt x0 to the
original output section and creates a new section called . nybgt xt for
the remaining input-section contents. More than 10 splits create
section names such as. nmybgt 10 and . nybgt 11.

A-13

i960® Processor Software Utilities User's Guide

A . text section of 196700 bytes splitsinto four sections named
.t ext 0 (containing the first input sections), . text 1, . t ext 2, and
. text (containing the last input sections).

The linker notifies you of each section split with a warning message unless
you suppress all warnings by using the wlinker option. Y ou receive no
other indication of section splits unless you produce a memory map by
using the mlinker option.

NOTE. Thelinker treats the new sections created under the same linker
directives that applied to the original section. Do not put the new names
into the directivefile.

7

Examples

1. Thefollowing creates an output section named . ab_t xt , containing
theinput . t ext sectionsfrom all the available input files, al the input
sections from the abn. o file, the. at xt and . at xt q sections from
afile.o,and. btxt frombfile. o, located as described in the
MEMORY: Configuring Memory Regions section.

SECTI ONS {
.ab_txt: {
*(.text)
abn. o

afile.o(.atxt .atxtq)
bfile.o(.btxt)
}
}
2. Thefollowing putsall of the common symbols from all the input files
into the mycomoutput section:

SECTI ONS {
mycom {[COMMON] }

A-14

Linker Command Language

3. To place covvoN sections from a specific file into a particular section,
use thisform:

SECTI ONS {

xxx : { filenanme.o(COWON) }
}

4. Thefollowing puts a symbol in the output symbol table for each file
that contributes a.. t xt input section to the . ut xt output section:
SECTI ONS {

.utxt: {
CREATE_OBJECT_SYMBOLS
*(.txt)
}
}

If comvoNis not in the linker directivefilein afinal link, uninitialized

variables are placed by default into the . bss section.

Allocating the Output Sections (>region, ALIGN, GROUP)

Y ou can allocate an output section by:
e explicit addresses

» aignment

* memory region name

* memory attribute

When allocating the output sections, the linker maintains the default or
specified alignment. The linker processes the output sectionsin the
following order:

1. output sections with explicit starting addresses.

2. output sections with memory-region names or attributes, placing each
section into the first appropriately configured, unallocated region of
sufficient size.

3. output sections with no location specifications, placing each section
into the first appropriate unallocated region of sufficient size.

For information on configuring memory regions, see the MEMORY:
Configuring Memory Regions section.

A-15

i960® Processor Software Utilities User's Guide

A-16

By default, the linker uses the largest alignment of any input section in the
output-section definition for the entire output section. Y ou can specify a
larger output-section alignment, which then overrides the input section’s
alignment specifications.

Specify the section alignment or address (not both) after the name of an
output-section specification, before the colon and the opening brace:

] LI GN(al i gn-expr)
o-section ddr - expr % {[statenents]}

al i gn- expr evauatesto a power of 2.
addr - expr evaluates to an address in configured memory.

Instead of allocating the output sections by an address, you can assign an
output section to a specific memory region by name or by attribute. For a
region name, use the > operator and the name after the output-section
definition:

o-section: {[statenents]} [>region]

regi on isamemory-region name or attribute list, as
defined in aMEMORY directive. The > isrequired.
For more information on matching sections and
memory regions by attribute, see the MEMORY:
Configuring Memory Regions section.

NOTE. You cannot specify both an address and a memory region.

Treating Output Sections as a Unit (GROUP)

Y ou can specify a set of output sectionsto be treated as a unit, including:
e contiguous memory locations, with the order of the sections preserved
» homogeneous attributes, kept together in a single memory region

Linker Command Language ‘ \

Put the output sections in a GROUP block in the SECTI ONS directive. You
can define multiple groups:
GROUP [addr-spec]: {

section-defs

} [>nmem spec]

addr - spec specifies an alignment or address. For more
information on this subject see the description for
the B and T section start address optionsin

Chapter 7.
section-defs is one or more output-section definitions.
mem spec specifies amemory region by name or attributes.

The > isrequired.

NOTES. Specify the address or memory region for a group the same as
for a section. Specify no such locations for the individual sectionswithin a
group.

An output section or group that does not fit at the specified address causes
anerror.

Although the GrRoupP() directive should keep the sectionsin the order
specified, empty sections that contain no external symbols and are not
user-defined (e.g., .data, .text, .bss) do not always appear in the specified
order. Thisbehavior can be avoided by declaring an external symbol in
the empty section.

Although the linker does not ensure that the sections are an even number of
bytesin length, you need not align the individual input sections within an
aligned output section. The assembler and compiler create sections that are
multiples of four bytesin length.

Examples

1. Thefollowing alignsthe out sec output section on an addressthat isa
multiple of 0x20000 (address 0x0, 0x20000, 0x40000, €tc.)

SECTI ONS { outsec ALI GN(0x20000): { } }

A-17

i960® Processor Software Utilities User's Guide

A-18

2. Thefollowing assigns. t ext the starting address 0x040000000,
. dat a thefirst available addressin ment, and . bss the first memory
location big enough hold it:

MEMORY {
meml: o = 0x10000000, | = 0x20000
men2: o = 0x40000000, | = 0x40000
}*
SECTI ONS {

.text 0x040000000: {}
.data: {} > mem
.bss: {}

}

3. Thefollowing keepsthe. t ext, . dat a, and . bss sections together in
the menbase memory region. Note that all of the sections are aligned
per the input section requirements and that . dat a immediately follows
.text,and. bss immediately follows. dat a.

SECTI ONS {
GROUP: {
.text {1}
.data {}
. bss {}
} >nenbase
}

Creating Gaps and Defining Symbols in Output Sections
(ALIGN, BYTE, FILL, LONG, SHORT, dot)

A section gap contains no information. To create a gap:

1. Changethelocation counter, represented by the dot (.) symbol, to
insert agap of any length filled with a repeated two-byte value.

2. Useaninitialization keyword to insert a byte, half-word, or word
value.

Linker Command Language

Assign a new value to the location counter with either:

[operator] = size-expr;
= ALI GN(al i gn-expr);

oper at or isan+,-,*,0r/ operator.

si ze-expr evauates to an offset address, relative to the
beginning of the output section, or to avalue to
be used by the operator.

al i gn- expr evauatesto a power of 2.

AL| GN returns the next address, within the output section, that is divisible
by the al i gn- expr.

To specify arepeating two-byte initialization value for the gapsin a
section, assign the fill value after the closing brace of the output-section
definition (or use FI LL () within a section definition):
o-section [addr-spec]: {

[st at enent s]
Y [=fill] [mem spec]

The phrase=fi /| designatesthefill value for the o- sect i on output
section.

For one-, two-, or four-byte gaps, use the initialization keywords:
BYTE(expr)

SHORT(expr)

LONG expr)

expr is abyte, half-word, or word value, respectively.
For any value that is longer than the keyword
reguires, the linker uses the least-significant byte,
half-word, or word.

A-19

‘ \ i960® Processor Software Utilities User's Guide

The location counter within an output-section definition is an offset relative
to the base address of the output section. Any address or alignment you
specify isrelative to the beginning of the output section. To find or specify
the location counter absolutely, specify the base address by explicitly
locating the output section, as described in the Locating the Output
Sections (>region, ALIGN, GROUP) section.

Examples

1. Thefollowing putstwo gapsin the out sec output section:

O A 0x1000 byte gap isleft at the beginning of the out sec output
section. Thef 1. o(. text) input section begins after the gap.

O Thef2.o(.text) input section beginsat 0x100 bytes after the
endof f1. o(.text).

O Thef3.o(.text) input section begins on the next word
boundary with respect to the beginning of out sec.

O The gapsarefilled with the two-byte value 0x0020.

SECTI ONS {

outsec: {
. += 0x1000;
fl.o(.text)
. += 0x100;
f2.0(.text)
.= ALIGN (4)
f3.0(.text)

}=0x0020

}
2. Thefollowing quad-word-aligns out sec:

SECTI ONS {
outsec ALIGN(16): {
. += 0x1000;
fl.o(.text)
. += 0x100;
f2.0(.text)
f3.0(.text)
}
}

A-20

Linker Command Language

3. Inthisexample:
O Thes2_start symbol pointsto the beginning of i nfi | e2(ss2)
(section ss2 frominput filei nfi | e2)
0 Thes2_end symbol pointsto thelast byteof i nfil e2(ss2).

SECTI ONS {
outscl: {
infilel(ssl)
s2_start = . ;
infile2(ss2)
s2_end = .-1;
}
}

4. Inthisexample, the symbol nmar k points to the first full word beyond
the end of the . dat a section of fi | el. 0. Four bytes are reserved by
the. +=4; statement for arun-timeinitialization of nysynbol ,
representing a long integer.

SECTI ONS {
outscl: {
filel.o (.data)
= ALIG\(4);
nmysynmbol = .;
. += 4,
file2.0 (.data)

}
}

5. This example does the following:
O alignsthe. dat a output section on the next 0x2000-byte boundary
after the . t ext output section
O definestheal s symbol to point to the next 0x8000-byte boundary
after the . dat a input sections
SECTI ONS {
.text { }
.data ALI G\(0x2000): {

*(.data)
al s = ALI G\(0x8000);

A-21

i960® Processor Software Utilities User's Guide

Defining Non-standard Sections (DSECT, COPY, NOLOAD)

Y ou can create output sections that:

e overlay other sections

« contain complete and exact copies of the input sections
e contain no data

Specify the non-standard section keywords (with or without parentheses)
immediately before the colon and opening brace of an output-section

definition:
[PSECT]

o-section [addr-spec] [COPY [J] { [statenents] }
[NOLQADL]

With DSECT, you can locate the symbolsin an output section without
writing any object code to the output file or alocating any memory. The
global symbols defined in a DSECT section are relocated normally, are
resolved as needed from the libraries, and are available to other sections.
For example, use DSECT to create an overlay section that, during execution,
can re-use a memory region no longer needed by a prior section. Overlay
section data can be read in from peripheral storage during execution.

To exclude the input-section contents from the output section, use NOLOAD.
A NOLOAD output section has no data in the object file, but occupies
memory and appears in the memory map. For example, use NOLOAD to
reserve amemory region for a section that islinked and located separately.

To copy the input-section contents and all associated information to the
output file, use COPY. A COPY output section is not located and occupies no
memory.

A-22

Linker Command Language

Example

The following allocates one of each nonstandard output-section type:

SECTI ONS {
nanel 0x200000 DSECT: { filel.o }
nane2 0x400000 COPY: { file2.0 }
nane3 0x600000 NOLOAD: { file3.0 }
}

COFF Binary Representations

The COFF binary representations of the NOLOAD, DSECT and COPY sections
are detailed in the table below:

Table A-5 COFF Binary Representation of NOLOAD, DSECT, COPY Sections
ALLOC RELOCATED scnptr size flags LOADED

NOLOAD N NA 0 S NOLOAD N

DSECT N NA 0 0 DSECT N

COPY N N S S COPY Y

ORDINARY Y Y S S 0 Y

The ALLOC column indicates whether or not the linker allocates memory
forit.

RELOCATED indicates whether the section isrelocated or not. Since the
DSECT and NOLQAD sections do not have section contents, it is not
applicable to them. Note that the COPY sections are not relocated, but
copyed verbatim.

If scnptr is0 in COFF, there are no section contents for it, even if thereis
size of the section. S indicatesthat the scnpt r corresponds to the file seek
address of the section contents. See Appendix C for information on the the
COFF OMF.

If si ze is0, the output section for that element isfillied with zeros.
S indicates that the section sizeis retained for your information.

A-23

i960® Processor Software Utilities User's Guide

A-24

Some of the sections set some special flags into the section’s flagword.
The table above indicates which flags are set.

A loader can load anything from the OMF file but, according to the
semantics defined here, the loader 1oads only those marked with ay in the
table above.

ELF Binary Representations

The ELF binary representations of the NOLOAD, DSECT and COPY sections
are detailed in the table below:

Table A-6 ELF Binary Representation of NOLOAD, DSECT, COPY Sections
SHF_ALLOC RELOCATED SHT_PROGBITS SIZE HAS_PROGRAM_HDR

NOLOAD N NA N S N

DSECT N NA N 0 N

COPY Y N Y S Y

ORDINARY Y Y Y S Y

SHF_ALLCC indicates whether or not the section is allocated memory by the
linker. It aso indicates that the output flag word contains this output flag.

RELOCATED indicates whether the section isrelocated or not. Since the
DSECT and NOLQAD sections do not have section contents, it is not
applicable to them. Note that the COPY sections are not relocated, but
copyed verbatim.

Each section contains SHT_PROGBI TS or SHT_NOBI TS. Y indicates that the
section isa SHT_PROGBI TS, while Nindicatesit is SHT_NOBI TS.

If si ze is0, the output section has zeroed that element. S indicates that the
section sizeis retained for your information.

If the column for HAS_PROGRAM_HDR contains a Y, the section should be
loaded by a memory loader utility.

Linker Command Language ‘ \

FORCE_COMMON_ALLOCATION: Allocating
Space for Common Symbols

To assign common-symbol space in the output data, use
FORCE_COMMON_ALLOCATI ON. This directive has the same effect asthed
option. Y ou can use FORCE_COMMON_ALLOCATI ON when generating either
relocatable or non-relocatable linked files. However, this feature is most
useful when using relocatable links.

DEFINED: Finding Symbols

To determine whether a global symbol is defined, use DEFI NED:
DEFI NED(synbol)

symbol is the symbol name.

Finding the symbol in the global symbol table returns 1.

In the following example, the value of begi n is preserved if begi n aready
existsin the global symbol table; otherwise, begi n is set to the location
counter (.):

begi n = DEFI NED(begi n) ? begin :

ADDR, ALIGN, NEXT: Finding Addresses
To find the absolute beginning address of a section, use ADDR:
ADDR(sect i on)

section is the name of alocated section.

For an address aligned after the current location counter, use ALI GN or
NEXT:

ALl GN(expr)
NEXT(expr)

expr is an alignment factor.

A-25

i960® Processor Software Utilities User's Guide

For memory with no unconfigured regions, ALI GN and NEXT are equivalent.
ALI GN returns the next address in configured memory that fits the specified
boundary. NEXT returns the next unallocated address that fits the boundary.

Examples

1. Thefollowing locates the osec1 output section in the ment memory
region and assigns the osec1 beginning address to the begi n_1
symbol:

SECTI ONS {
osecl : { *(.osecl) } >nenl
begin_1 = ADDR(osecl);

}

2. Thefollowing assignsthe first word-aligned address after the location
counter to the mar k1 symbol. If osec1 completely fillsment, the
mar k1 value is0x02000, in unconfigured memory:

MEMORY {
meml: o = 0x00000 | = 0x02000
men8: o = 0x40000 | = 0x05000
}
SECTI ONS {

osecl: { } >nenl
mar k1 = NEXT(4);
}
3. Thefollowing assigns the first word-aligned address after the location
counter to the mar k1 symbol. If osec1 completely fillsment, the
mar k1 value is0x40000, in the next configured memory region:

MEMORY {
meml: o = 0x00000 | = 0x02000
men8: o = 0x40000 | = 0x05000
}
SECTI ONS {

osecl: { } >nenl
markl = ALI GN(4);

SIZEOF: Finding Section Sizes

To find the size, in bytes, of a section, use SI ZEOF:

A-26

Linker Command Language

A

SI ZECOF(sect i on)

section is the name of alocated section.

The following example locates and sizes the . out 1 output section. The

out sz1 and out sz2 symbols acquire identical values.

SECTI ONS {
.outl: {
st_ol = .
*(.out)
end ol = .
}
outszl
outsz2

end ol - st_ol;
SI ZEOF(. out 1) ;

STARTUP: Specifying a Startup File

The syntax for the STARTUP directiveis:
STARTUP(fi | enane)

fil ename specifies the file to be linked first.

Specifying afile with STARTUP links the file first. Thisissimilar to
SYSLI B, except that with SysLI B thefileislinked after all other object
filesand libraries. See page A-31 for more information on SYSLI B.

To find the file specified with STARTUP, the linker follows the search

algorithm described in the Search Paths section.

The C (startup) linker option overrides the STARTUP directive, as described

in the Option Reference section.

A-27

i960® Processor Software Utilities User's Guide

A-28

Y ou can also use an asterisk to instruct the linker to search multiple
libraries. For example, if you specify:

STARTUP your i b*
the linker searchesfor your | i b, yourlib_b,yourlib_p,andyourlib_e.

ENTRY: Defining the Entry Point

The linker selects an entry point with the following order of precedence:
the symbol you specify with the e option

the symbol you specify with the ENTRY directive

thestart symbol, if defined

the _mai n symbol, if defined

thefirst addressin . t ext

the address 0

S S

Y ou can assign the entry point with e, ENTRY, or an assignment to st ar t
or _mai n. For example:

start = _ny_start_function;

Y ou can use ENTRY anywhere in your directive file, including inside an
output-section definition.

PRE_HLL(): Specifying Libraries to be Processed
Before the High-level Libraries

The syntax for the new directiveis:
PRE_HLL(!i brari es)

libraries isan abbreviation for one or more high-level
support librariesto be linked prior to those
specified with an HLL() directive. The common
library abbreviations are described on page 7-21.

Linker Command Language ‘ \

Thelinker directive PRE_HLL() allowsthe user to specify libraries that are
processed immediately before the high-level language libraries specified
withthe HLL() directive. The linker now loads the abject files and libraries
in the following order:

1. Thefilename specified with STARTUP.

2. All the object filesand libraries listed individually in the invocation, in
the order listed.

3. All the object filesand libraries listed individually in the directive
files, in the order listed.

4. All thelibraries specified with PRE_HLL.

All the libraries specified with HLL or default libraries in response to
HLL() .

6. All thelibraries specified with SYSLI B.

HLL: Specifying High-level Libraries
The syntax for the directiveis:
HLL([/i braries])

l'ibraries is one or more high-level support library
filenames. The parentheses are required.

If you do not specify libraries, the default HLL libraries are used.

Specify multiple libraries by entering more than one HLL directive or by
entering multiple filenames separated by spaces or commas. To use the
default libraries, enter HLL() .

The libraries and search path found by HLL depend on the linker invocation
and the output format. A gl d960 invocation for COFF treats the HLL
arguments the same asthe | linker option arguments, with the search
algorithm described in the Search Paths section. The default COFF library
abbreviations for HLL() are:

» ¢ for the KB and SB architectures

e candfpfortheKA, SA, C-series, and J-series architectures

A-29

‘ \ i960® Processor Software Utilities User's Guide

Invoking the linker as1 nk960 has the following effect on HLL:

* Any arguments you specify must be the full library filenames.

e Thelinker usesthe search path for | nk960 invocations, as described in
the Search Paths section.

* When you specify HLL() with no arguments, the linker includes a
high-level C library abbreviated as! i bc and the 64-bit integer support
library abbreviated as |1 i bu. Also, specifying FLOAT includes:

O theli bmhigh-level math library abbreviation, for all
architectures.

O Theli bh floating-point library abbreviation, for the i960® KA,
SA, Cx, Jx, Hx, and Rx architectures.

Without FLQOAT, or with NOFLQAT, the linker usesi bnst ub. a instead
of anyl i bmlibrary and includes no floating-point library.

To form the library filenames, the linker appends the following to the
l'i bc,libm andi i bh abbreviations:

1. the two-letter architecture abbreviation

2. _p, for position independence

3. . a, the standard library-filename extension

For example:
* The C library for a non-position-independent KB program is
I'i bckb. a.

» The math library for position-independent KB program, with
FLOAT specified, ig i brkb_p. a.

» The floating-point library for position-independent KA output,
with FLOAT specified, i3 i bhka_p. a.

The linker loads the object files and libraries in the following order:
1. the gap specified with STARTUP.

2. all the object files and libraries listed individually in the invocation, in
the order listed.

3. all the object files and libraries listed individually in the directive files,
in the order listed.

A-30

Linker Command Language ‘ \

4. dl thelibraries specified with HLL or default libraries in response to
HLL().

5. dll thelibraries specified with SY SLIB.

SYSLIB: Specifying Low-level Libraries

The syntax for the directiveis:
SYSLIB(/i brari es)

libraries isone or more librariesto be linked last.

Specify multiple libraries by entering more than one SYSLI B directive or
by entering multiple names separated by commas or spaces. Y ou must put
parentheses around the filenames. The linker follows the search agorithm
described in the Search Paths section. Y ou can also use an asterisk to
instruct the linker to search multiple libraries. For example, if you specify:

SYSLI B yourl i b*

the linker searchesfor yourli b, yourlib_b,yourlib_p,andyourlib_e.

[NOJFLOAT: Supporting Floating-point Operations

The syntax for the directiveis:
FLOAT | NOFLQOAT

FLOAT specifies support for floating-point operations.
The linker loads special emulation libraries for
the i1960® KA, SA, Cx, Jx, Hx, and RP
processors, which have no on-chip floating-point
support. For all processors, the linker also loads
an extended math support library. For
information on the floating-point and math
library names, see thgirectives Reference
section.

A-31

i960® Processor Software Utilities User's Guide

A-32

NOFLQAT indicates no need for floating-point operations.
Thelinker linksthe! i bnst ub. a rudimentary
math library and no emulation libraries. NOFLOAT
isthe default.

SEARCH_DIR: Extending the Search Path

To extend the linker search path, use SEARCH DI R:
SEARCH_DI R(pat h)

pat h isadirectory to be searched for libraries.

For a complete description of the library search path, see the Search Paths
section.

The L option has the same effect as the SEARCH DI R directive.

INCLUDE: Including Additional Directive Files

The syntax for the directiveis:
I NCLUDE(config-file)

config-file isthe name of the linker directivefile.

Y ou can specify the file to be included with a full pathname or with a
filename. The search agorithm differs according to the way you enter the
file specification. When you enter afull or relative pathname, the linker
searches only the specified directory for the file. When you enter only a
filename, the linker searches for the file asfollows:

» Thel NCLUDE directive iswithin atarget file, that is, afile specified
with the TARGET directive or the T (target) linker option. The linker
searches for the file according to the algorithm described in the Search
Paths section.

e Thel NCLUDE directiveisin any other directivefile. Thelinker
searches only the current directory for the specified file.

Linker Command Language ‘ \

TARGET: Using the Search Path for Directive Files

The syntax for the directiveis:
TARGET(fi | enane)

filename isthe directive filename for your target system.

The linker follows the search algorithm described in the Search Paths
section to find adirectivefile.

The TARGET directive has the same effect asthe T linker option.

CHECKSUM: Preparing for the Bus
Confidence Test

The syntax for the directiveis:
| ast - check- wor d=CHECKSUM expr, .. .)

expr identify the checksum component values.

Use this directive to obtain the value for the final checksum word to

complete the bus confidence test, as explained in your processor user’s
manual. Typically, you want to load the first few check words with bit
patterns that expose possible bus failure symptamrscksumlets you

load the final check word with a value that results in zero when the
processor performs an add-with-carry on all words in the initialization boot
record (IBR).

The cHECKSUMdirective takes a variable number of arguments, depending
upon the target processor's requirements. You define the values in the
directive file for your program.

A-33

i960® Processor Software Utilities User's Guide

A-34

For example, on an 1960 CA processor, suppose the IBR contains the
following word directives:

_init_boot_record:

.word BYTE_ O (BUS_CONFI G
.word BYTE_1 (BUS_CONFI G
.word BYTE_2 (BUS_CONFI G
.word BYTE_3 (BUS_CONFI G
.word _start

.word _romprcb

.word cwdl

.word cwd2

.word cwd3

.word cwd4

.word cwd5

.word cwd6

In the directive file, you define cwd1 through cwd5, then use the CHECKSUM
directive to determine the value of cwd6, as follows:

cwdl
cwd?2
cwd3
cwd4
cwd5
cwd6

Oxabababab;
Oxffffffff;
0x55555555;
Oxaaaaaaaa;
Ox5abababa;
checksunm(_start, _rom prcb, cwdl, cwd2, cwd3, cwd4, cwd5) ;

For the CHECKSUMdefinition for a particular target processor, see the
chapter on initialization in the appropriate processor user’'s manual.

OUTPUT: Naming the Output File

To specify an output filename other than the defaultouseurT:
QUTPUT(fi | enane)

fil enanme is the output filename.

Linker Command Language

The default output filenames are:

a. out for COFF format output
b. out for b.out format output
e. out for ELF format output

The oUTPUT directive has the same effect as the o linker option.

Linker Directive Files

To avoid reentering along or often used invocations, keep options and
filename information in atext file containing linker directives. Linker
directivefiles typically use the extension . | d. For example, the following
specifiesfilel. o,file2.0,andfil e3. o inthelinker invocation:

| nk960 -f Oxffff filel.o file2.0 file3.0

The following directive file, named | nkcnd. | d, specifies the same
filenamesand f option:

-f Oxffff
filel.o
file2.0
file3.0

Using | nkcnd. | d shortens the linker invocation:
I nk960 | nkcnd. t xt

Y ou can put options, object filenames, and library filenames in directive
files. To nest directivefiles, use! NCLUDE. Precede optionsin directive
fileswith ahyphen (-), not aslash (/), regardless of your host system. The
linker processes filenames and | NCLUDE directivesin the order
encountered.

Linker directive files support comments that are delimited by / * and */
(justasin C).

A-35

i960® Processor Software Utilities User's Guide

A-36

NOTE. You cannot use a hyphen (-) asthefirst character of a filename.

In the following example, thei fil e. t xt file contains:

file3.o
filed.o

Linking occursintheorderfilel.o, file3.o, file4.o, file2.0owhen
you enter:

I nk960 filel.o ifile.txt file2.0

Example

Thefollowing is an example linker directive file suitable for use with a
fictitious target board. See the other linker directive files shipped with the
toolslocated in $1 960BASE/ | i b/ *. | d and $G960BASE/ | i b/ *. 1 d for
more examples.

/* You can include invocation options at the beginning of
the linker directive file, for shorter, nore
consi stent |inker invocations. */
-ACA /* Produce code for an Intel 960 CA processor. */
-m /* Produce a map file. */

-N map.out /* Wite the map file to the file map.out */
-V /* Produce verbose output. */

/* You can specify input nmodul es at the begi nning of the
directive file, to be processed as if on the
invocation line. You can also include in the
invocation a separate text file containing only input
filenames, one per line, to be processed as if on the
invocation line or at the beginning of the directive
file. */

filel.o
file2.0
file3.0

Linker Command Language

MEMORY {
i br: o=0xffffff00,|=0x00ff /* The Intel 80960 CA
Initial Boot Record. */
rom o=0xff ff 8000, | =0x7800 /* Assunme a bank of ROM
exists at this address. */
ram 0=0xeOf f 9000, | =0x6000 /* Assune sone RAM exi sts
at this address. */

}
SECTI ONS {

/* We allocate the ibr to ibr nenory. Assune the code for
the ibr is in the input section .text in the file named
ca_ibr.o. */

ibr: {
ca_ibr.o(.text)
} >ibr

/* Assune we want the executable code and constants found
in the .text input sections allocated to the romnenory */

.text @ { *(.text) } > rom

/* We allocate the .data sections to ram */

.data : {
*(.data)
} > ram

/* W allocate the .bss section to ram (follow ng the end
of .data. W also place all common vari abl es here.
Lastly, note how we save off the addresses of the start of
bss and the end of bss, for possible later use at runtine.
*/

A-37

i960® Processor Software Utilities User's Guide

.bss : {_start_bss = .;
*(. bss)
[COVWWON|

_end_bss = .
} > ram

}

SYSLIB(nylibca.a) /* W include a systemlibrary in the
i nkage. */

A-38

Finding Information
In Object Files

Using the Common Object File Library: COFL

Table B-1

To use afunction fromthel i bl d960. a common object file library
(COFL), call the function from your C source text and link the assembled
object file with the COFL. Put the following linesin your C source text
before the first COFL function call:

#i ncl ude <stdio. h>
#i ncl ude "Il dfcn. h"

Add the directory containing | df cn. h to your host-system compiler search
path. For more information on your host-system compiler, see your host-
system documentation. For more information on the . h header files and
directories, see the i960® Processor Library Supplement

The COFL includes the functions listed in Table B-1.

Common Object File Library (COFL) Functions

Function Definition
Idaclose Closes the object file or archive.
Idahread Reads an archive member header.
Idaopen Opens the object file or archive for reading.
Idclose Closes the object file or archive member.
Idfhread Reads the file header.
Idgetname Retrieves a name from the object file symbol table.
Idlinit Prepares the object file for reading line number entries via
Idlitem.
continued [J

B-1

i960® Processor Software Utilities User's Guide

B-2

Table B-1

Common Object File Library (COFL) Functions (continued)

Function
Idlitem
Idiread
IdIseek
Idniseek
ldnrseek
ldnshread
ldnsseek
Idohseek
Idopen
Idrseek
Idshread
Idsseek
Idtbindex

Idtbread
Idtbseek

Definition

Reads the line number entry from the object file after Idlinit.
Reads the line number entry from the object file.

Seeks to the line number entries.

Seeks to the line number entries, given the section name.
Seeks to the relocation entries, given the section name.
Reads the section header, given the section name.
Seeks to the section, given the section name.

Seeks to the optional file header.

Opens the object file or archive member for reading.
Seeks to the relocation entries.

Reads the section header, given the section number.
Seeks to the section.

Returns the long index of the symbol table entry at the current
position.

Reads a specific symbol table entry.
Seeks to the symbol table

Extracting File Header Information

To extract COFF file-header information, use one of the macros listed in
Table B-2. Each header information macro takes as an argument an
| df i | e structure returned by acall to | dopen.

Finding Information in Object Files

Table B-2 Common Object File Interface Macros

Macro Definition

TYPE Returns the file type number. For archive files, TYPE returns
ARTYPE, as defined in Idfcn.h

IOPTR Returns the file pointer opened by Idopen and used by the C
library I/O functions.

OFFSET Returns the object file beginning address. The address is
zero except for archive file members.

HEADER Obtains the COFF file header structure.

Function Reference

This section describes the COFL functions a phabetically. Closely related

functions are described together. For example, thel dlinit and | ditem

functions are grouped with | di r ead.

|dahread

Reads an archive-
member header

#i ncl ude <stdio. h>
#i nclude "l dfcn. h"

int |dahread (Idptr, arhead)
LDFI LE *| dptr;

ARCHDR *ar head;
Discussion

To read an open archive header, use | dahr ead. The header of the archive
currently associated with | dpt r is put into memory beginning at ar head.

B-3

i960® Processor Software Utilities User's Guide

B-4

Thel dahr ead function returns SUCCESS or FAI LURE, defined in | df cn. h.
FAI LURE indicates either:

e TYPE(I dptr) does not represent an archivefile.

e Thel dahr ead function cannot read the archive header.

ldclose, Idaclose

Closes an object file or
an ar chive member

#i ncl ude <stdi o. h>
#i nclude "l dfcn. h"

int Idclose (ldptr)
LDFI LE *| dptr;

int |daclose (ldptr)
LDFI LE *| dptr;

Discussion

For uniform access to both object files and archive members, use:
| dcl ose for files opened with | dopen
| dacl ose for files opened with | daopen

To close an archive member, keeping the archive open, usel dcl ose. The
I dcl ose function returns SUCCESS or FAI LURE, defined in | df cn. h:

FAI LURE when TYPE(| dpt r) represents an archivefile
and the archive contains more members. The
I dcl ose function setsthe offset of | dpt r to the
next member file address and prepares| dpt r for
a subsequent | dopen call.

Finding Information in Object Files

SUCCESS when the archive contains no more members, or
when TYPE (I dpt r) represents an individual
object file.

To close an archive or object file regardless of the TYPE(I dptr), use

| dacl ose. Thel dacl ose function:

« closesthefile

» freesthe memory allocated to the LDFI LE structure associated with
| dptr

e returns SUCCESS

ldfhread

Reads the file header

#i ncl ude <stdio. h>
#i ncl ude "Il dfcn. h"

int |dahread (Idptr, filehead)
LDFI LE *1 dptr;
FI LHDR *fi | ehead;

Discussion

To read an open file header, use | df hr ead. The object-file header
associated with | dpt r is put into memory beginning at fi | ehead. The
| df hr ead function returns SUCCESS or FAI LURE, defined in| df cn. h,
indicating whether the read operation is successful.

To access file-header fields without afunction call, use HEADER(| dptr)
defined in| df cn. h. The macro returns no value.

B-5

i960® Processor Software Utilities User's Guide

l[dgetname
Retrieves a name from
the object-file symbol
table

#i ncl ude <stdio. h>
#i ncl ude "Il dfcn. h"

char *|dgetnane (ldptr, synbol)
LDFI LE *1 dptr;
SYMENT *synbol ;

Discussion

To retrieve aname from the string table, use | dget name. The returned
address points to a static buffer local to | dget nane. To save the name,
copy the static buffer, since the next | dget name call overwrites the static
buffer.

A NULL returned address indicates that the name cannot be retrieved, when:

¢ Thestring table cannot be found.

e Thenameistoo long for the amount of memory allocated to the string
table.

« Thestring table appears not to be a string table. For example, an
auxiliary entry passed to | dget nanme can apparently refer to anamein
a nonexistent string table.

« Theoffset into the string table is beyond the end of the string table.

For example, you can call | dget name immediately after a successful call

to | dt br ead to retrieve the name associated with the new symbol table
entry.

Finding Information in Object Files

ldIread, Idlinit, Idlitem

Locates and reads the
function line-number
entries

#i ncl ude <stdio. h>
#i ncl ude "Il dfcn. h"

int Idlread(ldptr, fcnindx, linenum 1linent)
LDFI LE *1 dptr;

| ong fcni ndx;

unsi gned short |inenum

LI NENO *| i nent;

int Idlinit(ldptr, fcnindx)
LDFI LE *1 dptr;
I ong fcnindx;

int Idlitem(ldptr, linenum Iinent)
LDFI LE *1 dptr;

unsi gned short |inenum

LI NENO *| i nent;

Discussion

To locate and read line-number entries:

| di read locates and reads a line-number entry for the
function specified by thef ci ndex symbol-table
entry.

[dlinit locates the line-number entries for the specified
function.

Idlitem locates and reads a line-number entry for the

current function.

i960® Processor Software Utilities User's Guide

B-8

Using !l dlinit followedby | dlitemisthesameasusing! di read alone.
Y ou can find the beginning of a series of line number entrieswith | dl i ni t
orldlread, thenusel dl i t emto retrieve the subsequent entriesin the
same function. For line number entriesin a different function, call
[dlinit orldl readwithadifferent f ci ndex.

Y ou need not know an exact line number when calling | di r ead or
I dl i tem Both functions read the entry with the smallest line number
equal to or greater than | i nenuminto| i nent .

To specify the function for line number entry searches without reading a
line number entry into 1 i nent , usel dl i ni t. To specify anew function
and read aline number entry, usel di r ead.

To find and read a line number entry without respecifying the function to
be searched, use!l dl i tem

Theldlinit,ldlitemandldlread functions return SUCCESS or
FAI LURE, defined in| df cn. h. Failure can indicate:

Condition Function

The object file contains no line Idlread,ldlinit
number entries.

The f cni ndx matches no symbol Idlread,ldlinit
table function entry.

No line number is equal to or greater | dlread, | dlitem
than | i nenum

Finding Information in Object Files

ldIseek, Idnlseek

Seeks to the line-number
entries of an object-file
section

#i ncl ude <stdio. h>
#i ncl ude "Il dfcn. h"

int |dlseek (ldptr, sectindx)
LDFILE *| dptr;
unsi gned short secti ndx;

int |dnlseek (Idptr, sectnane)
LDFI LE *1 dptr;
char *sect nane;

Discussion

Thel di seek function seeksto the line-number entries of the section
specified by sect i ndx of the COFF file currently associated with | dptr.
Thel dnl seek function seeksto the line-number entries of the section
specified by sect nane.

Thel dl seek and | dnl seek functions return SUCCESS or FAI LURE,

defined in| df cn. h:

e Thel dI seek function failswhen the variable sect i ndx is greater
than the number of sectionsin the object file.

e Thel dnl seek function fails when no section name corresponds with
*sect nane.

« Either function fails when the specified section has no line-number
entries or when the function cannot seek to the specified entries.

Thefirst sectionindex is 1.

B-9

i960® Processor Software Utilities User's Guide

B-10

ldohseek

Seeks to the COFF
optional file header

#i ncl ude <stdio. h>
#i nclude "l dfcn. h"

int | dohseek (Idptr)
LDFI LE *1 dptr;

Discussion

Thel dohseek function seeks to the optional file header of the COFF file
currently associated with | dptr.

Thel dohseek function returns SUCCESS or FAI LURE, defined in| df cn. h.
Failure occurs when:

e Theobject file has no optional header.
« Thefunction cannot seek to the optional header.

l[dopen, Idaopen

Opens an object file or
archive member for

#i ncl ude <stdio. h>
#i nclude "l dfcn. h"

LDFI LE *I dopen (filenane, |dptr)
char *fil enane;
LDFI LE *1 dptr;

LDFI LE *| daopen (fil ename, ol dptr)
char *fil enane;
LDFI LE *ol dptr;

Finding Information in Object Files

Discussion

Thel dopen and | dcl ose functions provide uniform access to both simple
object files and object files that are members of archivefiles.

When | dptr iSNULL, | dopen:

« opensthefileindicated by fi | ename

» alocates and initializes the LDFI LE structure

e returns a pointer to that structure to the calling program

When | dpt r isvalid and TYPE(| dpt r) isan archive-file type number,
| dopen reinitializes LDFI LE for the next f i | ename archive-file member.

Usel dopen and | dcl ose together. Thel dcl ose function returns

FAI LURE, defined in | df cn. h, only when TYPE(| dpt r) isthearchive
magic number and the archive contains other members to be processed. In
such cases, call | dopen with the current value of | dpt r. In all other cases,
especially when anew fileis opened, call | dopen withaNULL | dpt r
argument.

For example:
/* for each file name to be processed */
| dptr = NULL;
do {
if ((Idptr = Idopen(filenane, ldptr)) !'=NULL) {
/* Check the file-type nunber. */
/* Process the file. */

}
} while (ldclose(ldptr) == FAILURE);
When ol dpt r isnot NULL, | daopen:
e opensfilenane asanew file
e alocates and initializes a new LDFI LE structure
e copiesthe TYPE, OFFSET, and HEADER fields from ol dpt r

B-11

i960® Processor Software Utilities User's Guide

B-12

Thel daopen function returns a pointer to the new LDFI LE structure,
independent of ol dpt r. You can use both pointers concurrently to read
separate parts of the object file. For example, use one pointer to step
sequentially through the relocation information and the other to read
indexed symbol-table entries.

Both | dopen and | daopen open the specified file for reading and return
NULL when the file cannot be opened or LDFI LE structure memory cannot
be alocated. A successful open operation does not ensure that the fileisa
COFF file or an archived object file.

ldrseek, ldnrseek

Seeks to the file-section
relocation entries

#i ncl ude <stdio. h>
#i nclude "l dfcn. h"

int Idrseek (ldptr, sectindx)
LDFI LE *| dptr;

unsi gned short sectindx;

int Idnrseek (ldptr, sectnane)
LDFI LE *| dptr;

char *sect nane;

Discussion

The dr seek function seeksto the relocation entries of the section
specified by thesect i ndx of the COFF file associated with | dpt r .

Thel dnr seek function seeks to the relocation entries of the section
specified by sect nane.

Finding Information in Object Files

Thel drseek and | dnr seek functions return SUCCESS or FAI LURE, as

definedini df cn. h:

e Thel drseek function failswhen sect i ndx is greater than the number
of sections in the object file.

e Thel dnrseek function fails when no section name corresponds with
*sect nane.

» Either function fails when the specified section has no relocation
entries or when the function cannot seek to the specified relocation
entries.

Thefirst sectionindex is 1.

ldshread, ldnshread

Reads an indexed or
named file section
header

#i ncl ude <stdio. h>
#i nclude "l dfcn. h"

int |dshread(ldptr, sectindx, secthead)
LDFI LE *1 dptr;

unsi gned short secti ndx;

SCNHDR *sect head;

int |dnshread(ldptr, sectnane, secthead)
LDFI LE *1 dptr;

char *sect nane;

SCNHDR *sect head;

Discussion

Thel dshr ead function reads the section header specified by sect i ndx of
the COFF file associated with | dpt r into memory beginning at sect head.
Thel dnshr ead function reads the section header specified by *sect name
into memory beginning at sect head.

B-13

i960® Processor Software Utilities User's Guide

B-14

Thel dshr ead and | dnshr ead functions return SUCCESS or FAI LURE,

definedini df cn. h:

e Thel dshread function failswhen sect i ndx is greater than the
number of sectionsin the object file.

e Thel dnshread function fails when no section name corresponds with
*sect nane.

« Either function fails when it cannot read the specified section header.

Thefirst section-header index is 1.

ldsseek, ldnsseek

Seek to an indexed or
named file section

#i ncl ude <stdio. h>
#i nclude "l dfcn. h"

int |dsseek (ldptr, sectindx)
LDFI LE *1 dptr;
unsi gned short secti ndx;

int |dnsseek (ldptr, sectnane)
LDFI LE *1 dptr;
char *sect nane;

Discussion

Thel dsseek function seeks to the section specified by sect i ndx of the
common object file currently associated with | dpt r .

Thel dnsseek function seeks to the section specified by *sect nane.

Finding Information in Object Files

Thel dsseek and | dnsseek functions return SUCCESS or FAI LURE,

definedini df cn. h:

e Thel dsseek function failswhen the variable sect i ndx is greater
than the number of sectionsin the object file.

e Thel dnsseek function fails when no section name corresponds with
*sect nane.

» Either function fails when the specified section has no section data or
when the function cannot seek to the section data.

Thefirst sectionindex is 1.

|[dtbindex

Computes the symbol-
table-entry index

#i ncl ude <stdio. h>
#i nclude "l dfcn. h"

I ong | dtbindex (Idptr)
LDFI LE *1 dptr;

Discussion

Thel dt bi ndex function returns the index of the symbol-table entry at the
current position of the COFF file associated with | dpt r. Theindex isa
long integer.

Y ou can use the index in subsequent callsto | dt br ead. Calling

| dt bi ndex immediately after reading a particular symbol-table entry
returns the next entry index, because | dt bi ndex returns the index of the
symbol-table entry that begins at the current position of the object file.

B-15

i960® Processor Software Utilities User's Guide

B-16

Thel dt bi ndex function fails when the object file contains no symbols or
when the object file is not positioned at the beginning of a symbol-table
entry.

Thefirst symbol index in the symbol tableiso.

|dtbread

Reads an indexed
symbol-table entry

#i ncl ude <stdio. h>
#i nclude "l dfcn. h"

int Idtbread (I dptr, sym ndex, synbol)
LDFI LE *| dptr;

| ong syni ndex;

SYMENT *synbol ;

Discussion

Thel dt br ead function reads the syni ndex symbol-table entry of the
COFF file associated with | dpt r into memory beginning at synbol .

Thel dt br ead function returns SUCCESS or FAI LURE, defined in | df cn. h.
Failure occurs when syni ndex is greater than the number of symbolsin
the object file or when | dt br ead cannot read the symbol-table entry.

Finding Information in Object Files

|[dtbseek

Seeks to the symbol
table

#i ncl ude <stdio. h>
#i ncl ude "Il dfcn. h"

int |dtbseek (ldptr)
LDFI LE *1 dptr;

Discussion

Thel dt bseek function seeks to the symbol table of the object file
associated with | dpt r.

Thel dt bseek function returns SUCCESS or FAI LURE, defined in | df cn. h.
Thel dt bseek function fails when the symbol table has been stripped from
the object file or when the function cannot seek to the symbol table.

B-17

Common Object File Format
(COFF) and Common
Archive File Format (CAFF)

This chapter describes the iI960® processor common object file format
(COFF) and the associated common archive file format (CAFF) standards.

Characteristics of COFF

COFF applies to two kinds of files: relocatable binary files and executable
files. Relocatable binary files are produced by the assembler and by some
linker options. Executable files are created from relocatable binary files by
the linker.

Figure C-1 shows the relation of headers to the information in COFF.

/& NOTE. Theonly optional header the assembler usesis the execution
| header.

When you link a program with the linker's strip option, relocation
information, line numbers, the symbol table, and the string table are
deleted. Or you can remove line number information, the symbol table,
and the string table with the stripper.

Line numbers do not appear unless the program is compiled with the
compiler's debug control. If all external references are resolved at link-
time, no relocation information is included. The string table is also omitted
when the source file contains no symbols with names longer than eight
characters.

C1

i960® Processor Software Utilities User's Guide

C-2

Figure C-1

Object File Format

File Header
Section 1 Header

Section n Header
Raw Data for Section 1

Raw Data for Section n

Relocation Info. for Sect. 1

Relocation Info. for Sect. n
Line Numbers for Sect. 1

Line Numbers for Sect. n
Symbol Table
String Table

Required Header Information

24 Optional Header Information

0OsD317

Definitions and Conventions

Be sure you are familiar with these definitions and conventions before
using COFF. You can find additional termsin the glossary.

Sections

A section isthe smallest portion of an object file that can be relocated and
treated as a separate entity by the linker. By default, an object file has
three sections that are loaded into memory when thefileis executed. The
sections and their contents are;

.text
.data

. bss

the executable code for each instruction
initialized data variables
uninitialized data variables

Common Object File Format (COFF) and Common Archive File Format (CAFF) C

Additional sections can accommodate multiple text or data blocks, shared
data blocks, or user-specified sections.

For alinked file, each COFF section in that file has a begin and an end
symbol. Generally, __Bnane isthe begin symbol for each section and
__Enane isthe end symbol, where nane matches the COFF section name.
The begin and end symbols are limited to alength of 8 characters.

Physical and Virtual Address

In most COFF files, the physical address and virtual address of each
section or symbol are the same, even though the section heading contains
an address field for both. For example, on a system with paging, the
addressis|located relative to address zero of virtual memory and the
operating system performs another address trand ation.

File Header

The file header contains 20 bytes of information about the object file.
Table C-1 shows the contents of thefile.

Thef _opt hdr field contains the size of the optional header information.

The i1960® processor utilities, such as the dumper, work properly on any
common object file because they use the contents of tye hdr field to

locate the end of the optional header information and seek past the header.

C3

i960® Processor Software Utilities User's Guide

c4

Table C-1

File Header Contents

Bytes
0-1
2-3

4-7

8-11

12-15

16-17

18-19

Declaration
unsigned short
unsigned short

long int

long int

long int

unsigned short

unsigned short

Name
f_magic
f_nscns

f_timdat

f_symptr

f_nsyms

f_opthdr

f_flags

Description

file type number

number of section headers
(equals the number of sections)

time and date stamp indicating
when the file was created
relative to the number of elapsed
seconds since 00:00:00 GMT,
January 1, 1970

file pointer containing the starting
address of the symbol table

number of entries in the symbol
table

number of bytes in the optional
header

flags

File Header Declaration

The C structure declaration for the file header isin the cof f cof f . h header
file. Example C-1 shows the declaration format.

Common Object File Format (COFF) and Common Archive File Format (CAFF)

Example C-1 File Header Declaration

Table C-2

struct filehdr {

unsi gned short f_magic;
unsi gned short f_nscns;
| ong f_tindat;
| ong f_symptr;
| ong f _nsynms;
unsi gned short f_opthdr;

unsi gned short f_fl ags;

H

/*
/*
/*
/*
/*

/*

/*

#define FILHDR struct fil ehdr
#define FILHSZ si zeof (FI LHDR)

magi ¢ number */

nunber of section */
and date stanp */

ptr to synbol table */
nunber entries in
synbol table */

size of optiona

header */

flags */

File Header Flags

The file header flags describe the type of the object file. Table C-2

provides definitions of the flags.

File Header Flags

Mnemonic Definition
F_RELFLG
out.
F_EXEC
external references.
F_LNNO
F_LSYMS
F_AR32WR
F_AR32W
F_PIC

indicates whether relocation information was stripped

set if the file is executable and has no unresolved

set if line numbers were stripped out.

set if local symbols were stripped out.

set if byte ordering is little-endian.

set if byte ordering is big-endian.

set if the file contains position-independent code.

continued [

C-5

i960® Processor Software Utilities User's Guide

C-6

Table C-2 File Header Flags (continued)
Mnemonic Definition
F_PID set if the file contains position-independent data.
F_LINKPID set if the file is suitable for linking with position-

independent code or data.

F BIG_ENDIAN_T setif target information is in big-endian byte order.
F _SECT_SYM set in symbols representing section names.
The upper four bits of the flag's word contains the architecture type.
Table C-3 lists the flag names.

Table C-3 Architecture Types of File Header Flags

Mnemonic Definition

F_1960CORE architecture common to all i960 processors
F_1960KB or architecture common to KB and SB processors
F_1960SB

F_1960XA architecture common to KA, SA, and CA processors
F_1960CA architecture common to CA and CF processors
F_1960KA or architecture common to KA and SA processors
F_1960SA

File Type Numbers
In the file header, the first two bytes indicate the target on which the object
file can be executed. These file type numbers are defined as follows:

#define 1 960ROVAG C 0x0160 /* read-only text segnents */
#define 1 960RWAG C 0x0161 /* read-wite text segnents */

Common Object File Format (COFF) and Common Archive File Format (CAFF)

Table C-4

Execution File Header Declaration

The execution file header is the first data structure in the optional file
header that immediately follows the required header information. See
Table C-1 for the location and size of execution information in the file

header.

The C language structure declaration for the i960® processor-executable
(a. out) file header is in theof f . h header file. Refer to Table C-4 for the

declaration's fields.

Standard Output (a.out) File Header

Bytes Declaration Name
0-1 short f_magic
2-3 short vstamp
4-7 unsigned long tsize

8-11 unsigned long dsize
12-15 unsigned long bsize
16-19 unsigned long entry
20-23 unsigned long text_start
24-27 unsigned long data_start
28-31 unsigned long tagentries

Description
magic number
version stamp

text size in bytes, padded to full
word boundary

initialized data size
uninitialized data size

entry point

base of text for this file

base of data for this file
number of tag entries to follow

Thet agentri es field is always zero because none of Intel's development

tools use tag entries.

Section Headers

A table of section headers specifies the layout of data within the file. Table
C-5 shows the section header format. The size of a section is padded to a

multiple of 4 bytes.

C-7

i960® Processor Software Utilities User's Guide

Table C-5 Section Header Contents

Bytes Declaration Name Description
0-7 char S_name 8-character section name,
padded with zeros
8-11 long int s_paddr physical address of section
12-15 long int s_vaddr virtual address of section
16-19 long int s_size section size in bytes
20-23 long int S_scnptr file pointer to raw data
24-27 long int s_relptr file pointer to relocation entries
28-31 long int s_Innoptr file pointer to line number entries
32-33 unsigned short s_nreloc number of relocation entries
34-35 unsigned short s_nlnno number of line entries
36-39 long int s_flags flags
40-43 unsigned long s_align alignment of the section to the
int specified byte boundary
[NOTE. The Intel 80960 assembler rounds section sizes to the next higher
& 4-byte word boundary.

Section Header Declaration

The C structure declaration for the section headersisin thecof f . h header
file. Example C-2 shows the declaration format.

Common Object File Format (COFF) and Common Archive File Format (CAFF)

Example C-2 Section Header Declaration

struct scnhdr

{

char s_nane[8]; /* section name */

| ong S_paddr; /* physical address */

| ong s_vaddr; /* virtual address */

| ong S_si ze; /* section size */

| ong s_scnptr; /* file ptr to section
raw data */

| ong s_relptr; /* file ptr to
rel ocation */

| ong s_lnnoptr; /* file ptr to line
nunber */

unsi gned short s_nreloc; /* nunber of

relocation entries */

unsi gned short s_nl nno; /* nunber of line
entries */

| ong s_flags; /* flags */

unsi gned | ong s_align; /* section alignment */

}s
#defin SCNHDR struct scnhdr
#define SCNHSZ sizeof (SCNHDR)

Section Header Flags

Section header flags indicate the section type. Table C-6 shows the flag

format.

The flag field occupies one byte. The valuein the first five bits of the byte
indicates the section type. The valuein the last three bits indicates the
contents of the section. Figure C-2 showstheflag field for aregular text

section.

C-9

i960® Processor Software Utilities User's Guide

Figure C-2 Flag Field Values

7 0

o|o|1|0|0|0|0]|O

| | | |

Section Section

Contents Type

0OSD1134
Table C-6 Section Header Flags

Mnemonic Flag Definition

STYP_REG 0x00 regular section (allocated, relocated, loaded)

STYP_DSECT 0x01 dummy section (not allocated, relocated, not
loaded)

STYP_NOLOAD 0x02 noload section (allocated, relocated, not
loaded)

STYP_GROUP 0x04 grouped section (formed from input sections)

STYP_PAD 0x08 padding section (not allocated, not relocated,
loaded)

STYP_COPY 0x10 copy section (for a decision function used in
updating fields; not allocated, not relocated,
loaded, relocation and line number entries
processed normally)

STYP_TEXT 0x20 section contains executable text

STYP_DATA 0x40 section contains initialized data

STYP_BSS 0x80 section contains uninitialized data

C-10

Common Object File Format (COFF) and Common Archive File Format (CAFF)

Sections

The raw datafor each section followsthe list of section headers. If a
section has data, thes_scnpt r field in its section header pointsto it (see
Figure C-2). For a section with no raw data (abss section, for example),
thes_scnpt r field contains anull value.

Relocation

Table C-7

A relocation entry is used by the linker. It consists of the address at which
relocation should occur, the index of the relevant symbol in the symbol
table, and the type of relocation required. Table C-7 shows relocation
entry format.

Relocation Entry Format

Bytes Declaration Name Description

0-3 long int r_vaddr address of reference
4-7 long int r_symndx symbol table index
8-9 unsigned short r_type relocation type
10-11 char padder[2] padding---not used

Table C-8 contains relocation types defined for the i960® processor.

C-11

i960® Processor Software Utilities User's Guide

C-12

Table C-8 Relocation Types

Mnemonic
R_RELLONG
R_RELSHORT
R_IPRSHORT
R_IPRMED
R_IPRLONG
R_OPTCALL
R_OPTCALLX
R_GETSEG
R_GETPA
R_TAGWORD

Decimal Hexadecima
Value Value
17 0x0011
22 0x0016
24 0x0018
25 0x0019
26 0x001A
27 0x001B
28 0x001C
29 0x001D
30 0x001E
31 0x001F

Definition

direct 32-bit relocation
direct 12-bit relocation
unimplemented
IP-relative relocation
32-bit IP-relative relocation
optimizable call (callj)
optimizable call (calljx)
unimplemented
unimplemented
unimplemented

Relocation Entry Declaration

The structure declaration for relocation entriesisin the cof f . h header file.
Refer to Example C-3 for the declaration format.

Example C-3 Relocation Entry Declaration

struct reloc

{
| ong r_vaddr;
| ong r_symdx;
unsi gned short r_type;
char padder [2]
}

#defi ne RELOC
#defi ne RELSZ

struct reloc
si zeof (RELOC)

/*

/*

/*
/*

virtual address of
reference */

synbol tabl ei ndex
into synbol table */
rel ocation type */
paddi ng */

Common Object File Format (COFF) and Common Archive File Format (CAFF)

Direct Relocation

In direct relocation, the linker adds the 32-bit address of the requested
symbol to the value at agiven location. In this example, the assembler
placesthe value 4 at location x and issues a R_RELLONG request for
funbl e. Atlink-time, linker adds the value of f unbl e to the word at x.

.gl ob funbl e
X: .word funbl e+4

IP-relative Relocation

In IP-relative relocation, the linker adds the value of the following
expression to the offset in the instruction specified by the relocation entry.

addr (synmbol) - (base address of current segment)

The br anch instruction takes a 24-bit | P-relative offset. In the following
example, the assembler places the negation of the current location counter
in the branch instructions offset field (in this example, oxf f f f f 0) and
issuesanr _i pr med relocation request for this branch instruction. At link-
time, the linker adds the value of f unbl e and subtracts the value of

t start from the branch instruction’s offset. The result isthe true
IP-relative offset of f unbl e. The branch address must be within 24 bits.

.globl funble

.text

tstart:

. Space 0x10

X: b funble

[* disassenbly for r.0 */

/* section .text */
.text
0: 00000000 .word OxO0
4: 00000000 .word OxO0
8: 00000000 .word OxO0
c: 00000000 .word OxO0
10: o08fffffo b 0x0

C-13

i960® Processor Software Utilities User's Guide

C-14

*** RELOCATI ON | NFORMATI ON* * *

Vaddr Symadx Type Nare
r.o:
.text:
0x00000010 10 | PRVED funbl e
. dat a:
. bss:

Line Number Entry

Example C-4

Invoke the compiler with the debug option to get alisting of line numbers
where you can place breakpoints to make debugging easier. All line
numbersin asection are grouped by function, as shown in Example C-4,
and are relative to the beginning of afunction. Thes_I nnopt r fieldinthe
section header points to the first line number entry for that section.

Line Number Grouping

symbol i ndex 0
physi cal address i ne nunber
physi cal address i ne nunber
symbol i ndex 0
physi cal address i ne nunber
physi cal address i ne nunber

The first entry for each section has line number zero and contains the
symbol table index of the function name. Each following entry associates
each line number with the address of the code generated for it.

The structure declaration for line number entriesisin thecof f . h header
file. Example C-5 shows the structure declaration for line number entries.

Common Object File Format (COFF) and Common Archive File Format (CAFF)

Example C-5 Line Number Entry Declaration

struct |ineno

{ .
uni on
{
| ong | _symdx; [* synbol table index
of func nane*/
| ong | _paddr; /* paddr of I|ine
numnber */
} | _addr;
unsi gned short | _l nno; /* l'ine nunber */
char padding[2] /* not used */
3
#def i ne LI NENO struct |ineno
#define LI NESZ si zeof (LI NENO)
Symbol Table

The symbol table consists of at least one fixed-length entry per symbol,
with some symbols followed by auxiliary entries. Each entry includes the
value, the type, and other information. Example C-6 showsthe order in
which symbols arelisted. f_synst r in the file header pointsto the
beginning of the symbol table. Thef _nsyns field in the file header
contains the total number of entriesin the symbol table.

C-15

i960® Processor Software Utilities User's Guide

C-16

Example C-6

COFF Symbol Table

file name 1
function 1
| ocal symbols for function 1
function 2
| ocal symbols for function 2

static variabl es

file nane 2
function 1
| ocal symbols for function 1

static variabl es

defined gl obal synbol s
undefi ned gl obal synbol s

Symbol Table Entries

The symbol table consists of two genera kinds of entries, each 24 bytes
long. Thefirst typeisthe main entry, representing asymbol. The format
of the main entry is shown in Table C-9. The second type of entry isan
auxiliary entry, whose format varies depending on how it is used.

Common Object File Format (COFF) and Common Archive File Format (CAFF)

Table C-9 Symbol Table Entry Format
Bytes Declaration Name Definition
0-7 _n the name of a pointer or of a symbol
8-11 long int n_value symbol value; storage class
dependent
12-13 short n_scnum section number of symbol
14-15 unsigned short n_flags pic, pid flags for the module
containing the symbol, flag when
symbol is a section name
16-19 unsigned long n_type basic and derived type specification
20 char n_sclass storage class
21 char n_numaux number of auxiliary entries
22-23 char pad2[2] padding to force alignment
Structure for Symbol Table Entries
Example C-7 shows the C language structure declaration for the symbol
table entry that can be found in the cof f . h header file.
Example C-7 Symbol Table Entry Declaration

#define SYMNMLEN 8 /* Nunber of characters in a
synbol name */
struct synent {

uni on {
char _n_nanme[SYMNMLEN] ; /* synbol name */
struct {
| ong _n_zeroes; /* zero - nane in string table */
| ong _n_offset; /* offset into string table */
}o_n_nm;
char * n_nptr[2]; /* allows for overlaying */
}oom
| ong n_val ue; /* val ue of synbol */
short n_scnum /* section nunber */

continued [J

C-17

i960® Processor Software Utilities User's Guide

C-18

Example C-7

Symbol Table Entry Declaration (continued)

unsi gned short n_fl ags; /* copy of "flags" from*/
/* input file header if */
/* not a section synbol./*
unsi gned | ong n_type; /* type and derived type */

char n_scl ass; /* storage class */
char n_numaux; /* number of aux. entries */
char pad2[2]; [/* force alignment */

b

#def i ne n_nane _n._n_nanme

#define n_nptr _n._n_nptr[1]

#defi ne n_zeroes _Nn._n_n._n_zeroes

#define n_of fset _n._n_n._n_of fset

#def i ne SYMENT struct synent

#def i ne SYMESZ si zeof (SYMENT)

Symbols and Inner Blocks .bb/.eb

A block isacompound statement, and an inner block is a block that occurs
within afunction that isitself a block.

For each inner block that uses local symbols, the symbol . bb appearsin
the symbol table right before the first local symbol of that block, and the
symbol . eb appears right after the last local symbol. The sequenceis
shown here:

. bb
I ocal symbols for that block
.eb

Example C-8 is a C language example that shows nesting the . bb and . eb
pair and associated symbals.

Common Object File Format (COFF) and Common Archive File Format (CAFF)

Example C-8 Nested Blocks

{

int i;
char c;

I ong a;

long i;

int x;

/*

/*

/*

/*
/*

/*

/*
/*

bl ock

bl ock

bl ock

bl ock
bl ock

bl ock

bl ock
bl ock

w

*/

*/

*/

*/
*/

*/

*/
*/

Example C-9 shows the format of the symbol table for these nested blocks.

Example C-9 Example of a Symbol Table

.bb for block 1

. bb
. bb
.eb
.eb
. bb

. bb
.eb

1
C

for block 2

a

for block 3

X

for block 3
for block 2
for block 4

for block 4
for block 1

C-19

i960® Processor Software Utilities User's Guide

C-20

Symbols and Functions .bf/.ef, .target

In the symbol table, the symbol . bf appears between the function name
and thefirst local symbol of the function, and the symbol . ef appearsright
after the last local symbol. The sequence is shown here:

function nane
. bf

| ocal synmbol
.ef

When the return value of the function is a structure or union, the compiler
createsa. t ar get symbol for storing the function-return. This symbol is
an automatic variable of the type poi nt er and has avaluefield of zero. It
appears in the symbol table between the function name and the symbol
. bf , as shown here:
function nane

.target

. bf

| ocal synbol s
. ef

Special Symbols

The symbol table contains special symbols that are generated by the
assembler, the compiler, and other utilities. Table C-10 showsalist of
these symbols.

Common Object File Format (COFF) and Common Archive File Format (CAFF)

Table C-10

Special Symbols in the Symbol Table

Symbol Definition

file filename

text address of .text section

.data address of .data section

.bss address of .bss section

.bb address of start of inner block

.eb address of end of inner block

.bf address of start of function

.ef address of end of function

.target pointer to the structure or union returned by a function
xfake dummy tag name for structure, union, or enumeration
.eos end of members of structure, union, or enumeration
_etext next available address after the output section .text
_edata next available address after the output section .data
_end next available address after the output section .bss

_ _Bname address of beginning of name

_ _Ename address of end of name

Thesymbols_ _Bnane and _ _Enane are generated by the linker asa

convenience to the user. _ _Bname marks the beginning of a section

denoted as nane and _ _Enane marks the byte following the last byte of

the section.

NOTE. These symbol names are preceded by a double underscore (_ _).

These symbol names cannot exceed 8 charactersin length.

C-21

i960® Processor Software Utilities User's Guide

C-22

When _ _Bnane and _ _Enane mark the beginning and end of the. t ext ,

. dat a, and . bss sections, the initial period in the filenames is dropped.
Thus, the sections . t ext and . dat a would be delimited by _ _Bt ext ,

_ _Etext,_ _Bdata,and_ _Edata. Theinitial period in any user-defined
section, however, isretained. A user filecaled . nysec, for example,
would be delimited by _ _B. nysec and _ _E. nysec.

Six specia symbols comein pairs. The. bb and . eb pair indicates the
boundaries of inner blocks. The. bf and . ef pair brackets each function.
The. xf ake and . eos pair names and defines the limit of unnamed
structures, unions, and enumerations;. The . eos symbol also appears after
named structures, unions, and enumerations.

When a structure, union, or enumeration has no tag name, the compiler
invents asymbol table name: . xf ake; , where x is an integer greater than
zero. Severa unnamed items are tagged consecutively, as follows:

. 1f ake, . 2f ake, . 3fake 11f ake, . 12f ake, €tC.

For each section the assembler creates, it generates a symbol table entry in
which bit 0x200 in the symbol flags field is set. This creates a signature
recognized by the tools that process COFF files.

The linker does not generate symbols for the sections it creates.

Symbol Name

The symbol name structure is actually a union declared like this:
uni on {

char n_nane[8] ;

struct string_table_pointer {

| ong n_zeroes;
| ong n_offset;

}
If asymbol name islessthan eight characterslong, it is stored in n_narre,
padded if necessary with nulls. If the symbol nameislonger than 8
characters, n_zer oes isset to 0 and n_of f set isset to the offset into the
string table at which the symbol name is stored.

Common Object File Format (COFF) and Common Archive File Format (CAFF)

Table C-11 Symbol Name Field
Bytes Declaration Name Description
0-7 char n_name null-padded symbol name
0-3 long_int n_zeros zero in this field indicates that the

name is in the string table

4-7 long_int n_offset offset of the name in the string table
Storage Classes
Storage class is associated with each symbol by the compiler or assembler
and stored inthen_scl ass field. However, the following are used only
externally: C_EFCN, C_EXTDEF, C_ULABEL, C_USTATI C, and C_LI NE
Table C-12 provides definitions of the storage classes.

Table C-12 Storage Classes

Mnemonic
C_EFCN
C_NULL
C_AUTO
C_EXT
C_STAT
C_REG
C_EXTDEF
C_LABEL
C_ULABEL
C_MOS
C_ARG

C_STRTAG

Decimal
Value

'
=

© 00 N o o0 b~ W N P O

=
o

Hexadecimal

Value Storage Class
physical end of a

0x0000 unknown

0x0001 automatic variable

0x0002 external symbol

0x0003 static variable

0x0004 register variable

0x0005 external definition

0x0006 label

0x0007 undefined

0x0008 member of structure

0x0009 function argument in an argument
block

0x000A structure tag

continued [

i960® Processor Software Utilities User's Guide

C-24

Table C-12

Storage Classes (continued)

Decimal
Mnemonic Value
C_MOuU 11

C_UNTAG 12
C_TPDEF 13
C_USTATIC 14
C_ENTAG 15

C_MOE 16
C_REGPARM 17
C_FIELD 18

C_AUTOARG 19

C_BLOCK 100

C_FCN 101
C_EOS 102
C_FILE 103
C_LINE 104
C_ALIAS 105

C_HIDDEN 106
C_SCALL 107
C_LEAFEXT 108

C_LEAFSTAT 113

Hexadecimal

Value Storage Class

0x000B member of union

0x000C union tag

0x000D type definition

0x000E uninitialized static variable

0x000F enumeration tag

0x0010 member of enumeration

0x0011 function argument in a register

0x0012 bit field

0x0013 function argument in the callee’s
frame

0x0064 beginning and end of

0x0065 beginning and end of

0x0066 end of

0x0067 filename

0x0068 used only by utility programs

0x0069 duplicated tag

0x006A used to avoid name conflicts

0x006B reached by a system call

0x006C global leaf procedure: can be
called with BAL

0x0071 static leaf procedure: can be called
with BAL

Common Object File Format (COFF) and Common Archive File Format (CAFF)

Table C-13

Storage Classes for Special Symbols

Restricted storage classes, used only for certain symbols, are givenin
Table C-13.

Restricted Storage Classes

Storage Class Special Symbol
C_BLOCK .bb, .eb

C_FCN bf, .ef

C_EOS .eos

C_FILE file

Call Optimization

Call optimization occurs when the linker matches an R_OPTCALL relocation
reguest with a symbol of storage classC_SCALL, C_LEAFSTAT, or
C_LEAFEXT. When the storage classis C_SCALL, the linker replaces the

cal | instruction with acal | s instruction to the appropriate system
procedure index. For the C_LEAFEXT or C_LEAFSTAT storage classes, the
linker replacesthe cal | with abranch-and-link instruction to a special
entry point in the destination procedure.

C_SCALL isthe storage class associated with names of routines that can be
called with thecal | s instruction. Symbols of type C_SCALL have two
auxiliary entries, the second of which contains the index of the destination
procedurein atable of system calls.

The C_LEAFEXT storage class is associated with routines that can be called
with the branch-and-link (bal) instruction. Such routines can have two
entry points. The address of thefirst, thecal | entry, is given asthe value
of the routine name and supports accessviaacal | instruction. The
address of the second is contained in the second auxiliary entry.

C-25

i960® Processor Software Utilities User's Guide

C-26

Table C-14

The C_LEAFSTAT storage class also is associated with routines to be called
with bal , but the assembler optimizes the functions instead of the linker
because the routine is of source module scope.

Symbol Value Field

The value of a symbol depends on its storage class. Thisrelationshipis
summarized in Table C-14.

Symbol Value Field

Storage Decimal Hexadecimal

Class Value Value Argument Value

C_AUTO 1 0x0001 frame pointer offset in bytes

C_EXT 2 0x0002 relocatable

C_STAT 3 0x0003 relocatable address

C_REG 4 0x0004 register number: r0 = 0,...,r15 = 15,
g0 =16,...,g15=31

C_LABEL 6 0x0006 relocatable address

C_MOS 7 0x0008 offset in bytes

C_ARG 8 0x0009 argument block offset

C_STRTAG 9 0x000A zero

C_MOU 11 0x000B zero

C_UNTAG 12 0x000C zero

C_TPDEF 13 0x000D zero

C_ENTAG 15 0x000F zero

C_MOE 16 0x0010 enumeration value

C_REGPARM 17 0x0011 register number r0 = 0,...,r15 = 15,
g0 =16,...,g15=31

C_FIELD 18 0x0012 bit displacement

C_AUTOARG 19 0x0013 frame pointer offset in bytes

continued [J

Common Object File Format (COFF) and Common Archive File Format (CAFF)

Table C-14

Symbol Value Field (continued)

Storage Decimal

Class Value
C_BLOCK 100

C_FCN 101
C_EOS 102
C_FILE 103
C_ALIAS 105

C_HIDDEN 106

Hexadecimal

Value
0x0064
0x0065

0x0066
0x0067

0x0069
0x006A

Argument Value

relocatable address

relocatable address

size

symbol table entry index for next
file symbol

tag index

relocatable address

A symbol with storage class C_FI LE has avalue that points to the next

. filesymbol inthe symbol table, or the beginning of the global symbols
inthecaseof thelast. fil e symbol. Beforefilesare linked, the value of
the. fil e symbol is zero.

Relocatable address symbols have a value equal to the address of the
symbol. When the linker relocates the section, the value of the symbol

changes.

Section Number Field

The section number field indicates the section in which asymbol is
defined. Table C-15 shows the defined constants used to refer to thisfield.

C-27

i960® Processor Software Utilities User's Guide

C-28

Table C-15

Section Number Field

Section

Symbol Name Number Definition

N_DEBUG -2 symbolic debugging symbol, including tag
names for structures, unions, or
enumerations, typedefs, and name of file

N_ABS -1 absolute symbol, not relocatable

N_UNDEF 0 undefined external symbol

N_SCNUM any integer > 0 section number in which symbol is defined

Absolute symbols include automatic and register variables, function
arguments, and . eos symbols. The. text, . data, and. bss symbols
default to section numbers 1, 2, and 3 respectively.

A section number of zero indicates a relocatable external symbol that is
undefined in the current file. However, a multiply-defined external symbol
(i.e., an uninitialized variable defined outside afunction in C) has a section
number of zero and a positive value, which gives the symbol size.

When files with multiply defined external symbols are combined, the
linker combines all input symbols into one symbol and assignsthe . bss
section number. The size of the combined symbols determines how much
memory is allocated, and the value becomes the address of the symbol.

Section Numbers and Storage Classes

Symbols with certain storage classes are restricted to certain section
numbers. Thisrelationship is summarized in Table C-16.

Common Object File Format (COFF) and Common Archive File Format (CAFF)

Table C-16

Section Number and Storage Class

Storage
Class

C_AUTO
C_EXT

C_STAT
C_REG
C_LABEL

C_MOS
C_ARG
C_STRTAG
C_Mou
C_UNTAG
C_TPDEF
C_ENTAG
C_MOE
C_REGPARM
C_FIELD
C_BLOCK
C_FCN
C_EOS
C_FILE
C_ALIAS

Section
Number

-1
-1,0,1to
077777
1to 077777
-1
-1,0,1to
77777

1to 077777
1to Q77777

Hexadecimal
Value

0x0001
0x0002

0x0003
0x0004
0x0006

0x0008
0x0009
0x000A
0x000B
0x000C
0x000D
0x000F
0x0010
0x0011
0x0012
0x0064
0x0065
0x0066
0x0067
0x0069

Symbol Names
N_ABS

N_ABS, N_UNDEF,
N_SCNUM

N_SCNUM
N_ABS

N_UNDEF, N_SCNUM,
N_ABS

N_ABS
N_ABS
N_DEBUG
N_ABS
N_DEBUG
N_DEBUG
N_DEBUG
N_ABS
N_ABS
N_ABS
N_SCNUM
N_SCNUM
N_ABS
N_DEBUG
N_DEBUG

C-29

i960® Processor Software Utilities User's Guide

C-30

Type Entry

Thetype field in the symbol table entry contains information about the
basic and derived type for the symbol. The compiler generates this
information when the debug option is used. Each symbol has one basic or
fundamental type but can have more than one derived type.

The format of the 32-bit type entry is:
di3 ... dé6 d5 d4 d3 d2 di type

Bit order isfrom bit 31 on the left to bit 0 on the right. Bits 4 through O,
indicated above by t ype, specify one of the fundamental types givenin
Table C-17. Fundamental types are determined by the user input type.
Bits 5 through 30 are arranged as thirteen 2-bit fields referred to asd1
through d13. These fields represent levels of the derived types with the
values shown in Table C-18.

Two examples demonstrate the interpretation of the symbol table entry
representing ¢ ype.

In the first example, the function f unc returns a pointer to a character.

char *func();

The fundamental typeis 2 (character), the d1 field is 2 (function), and the
d2 fieldis 1 (pointer). Therefore, the type word in the symbol table for

f unc contains the hexadecimal number 0xC2, indicating a function that
returns a pointer to a character.

In the second example, thet abpt r identifier is athree-dimensiona array
of pointersto short integers.

short *tabptr[10][25][3];

The fundamental type of t abpt r is3 (short integer); thed1, d2, and d3
fields each contain a3 (array), and the d4 field is 1 (pointer). Therefore,
the type entry in the symbol table contains the hexadecimal number 0xFE3,
indicating a three-dimensional array of pointersto short integers.

Common Object File Format (COFF) and Common Archive File Format (CAFF)

Table C-17 Fundamental Types
Decimal Hexadecimal
Mnemonic Value Value Definition
T_NULL 0 0x0000 not assigned
T _VOID 1 0x0001 void
T_CHAR 2 0x0002 character
T_SHORT 3 0x0003 short integer
T_INT 4 0x0004 integer
T _LONG 5 0x0005 long integer
T_FLOAT 6 0x0006 floating point
T _DOUBLE 7 0x0007 double word
T_STRUCT 8 0x0008 structure
T_UNION 9 0x0009 union
T_ENUM 10 0x000A enumeration
T_MOE 11 0x000B member of enumeration
T_UCHAR 12 0x000C unsigned character
T_USHORT 13 0x000D unsigned short
T_UINT 14 0x000E unsigned integer
T_ULONG 15 0x000F unsigned long
T_LNGDBL 16 0x0010 long double
Table C-18 Derived Types Field Values
Decimal Hexadecimal
Mnemonic Value Value Definition
DT_NON 0 0x00000 no derived type
DT_PTR 1 0x0001 pointer
DT_FCN 2 0x0002 function
DT_ARY 3 0x0003 array

C-31

i960® Processor Software Utilities User's Guide

Type Entries and Storage Classes

Table C-19 shows the derived type entries that are legal for each storage
class.

Table C-19 Type Entries by Storage Class

Storage Class Function Array Pointer Basic Type
C_AUTO no yes yes any except T_MOE
C_EXT yes yes yes any except T_MOE
C_STAT yes yes yes any except T_MOE
C_REG no no yes any except T_MOE
C_LABEL no no no T_NULL
C_MOS no yes yes any except T_MOE
C_ARG yes no yes any except T_MOE
C_STRTAG no no no T_STRUCT
C_MOU no yes yes any except T_MOE
C_UNTAG no no no T_UNION
C_TPDEF no yes yes any except T_MOE
C_ENTAG no no no T_ENUM
C_MOE no no no T_MOE
C_REGPARM no no yes any except T_MOE
C_FIELD no no no T_ENUM
T_UCHAR
T_USHORT
T_UNIT
T_ULONG
C_BLOCK no no no T_NULL
C_FCN no no no T_NULL
continued [J

C-32

Common Object File Format (COFF) and Common Archive File Format (CAFF)

Table C-19

Type Entries by Storage Class (continued)

Storage Class Function Array Pointer Basic Type
C_EOS no no no T_NULL
C_FILE no no no T_NULL
C_ALIAS no no no T_STRUCT
T_UNION
T_ENUM

Conditions for the d entries apply to d1 through d13, except that you
cannot have two consecutive derived types of function, that is, you cannot
have a function returning a function.

Although function arguments can be declared as arrays, the compiler
changes them to pointers by default. Therefore, a function argument
cannot have array asitsfirst derived type.

Auxiliary Table Entries

The auxiliary table entry or entries for a symbol have 24 bytes each. Every
symbol has an auxiliary table entry with the same number of bytes asthe
symbol hasin the symbol table entry. Table C-20 provides a summary of
the auxiliary symbol table format. The formats are discussed in detail in
subsequent sections.

C-33

i960® Processor Software Utilities User's Guide

C-34

Table C-20

Auxiliary Symbol Table Entries

Storage
Name Class
file C_FILE
.text,.data, C_STAT
.bss
tagname C_STRTAG
C_UNTAG
C_ENTAG
.e0s C_EOS
function name C_EXT
C_STAT
array name C_AUTO
C_STAT
C_MOSs
C_MOU
C_TPDEF
.bb C_BLOCK
.eb C_BLOCK
bf,.ef C_FCN
name related C_AUTO
to structure, C_STAT
union, C_MOS
enumeration C_MOU
C_TPDEF

----Type of Entry----
dl typ

DT_NON T _NULL

DT_NON T_NULL

DT_NON T _NULL

DT_NON
DT_FCN

T_NULL
Any except
T_MOE.
Any except
T_MOE.

DT_ARY

DT_NON
DT_NON
DT_NON

T_NULL
T_NULL
T_NULL

DT_PTR
DT_ARR
DT_NON

T_UNION
T_ENUM

T_STRUCT

Auxiliary
Entry Format

filename - possibly
followed by compiler
or assembler
identification

section

tag name

end of structure

function

array

beginning of block
end of block

beginning and end of
function

name related
to structure,
union,
enumeration

A tagname is a symbol name that includes the special symbol . xf ake. The
classesf cnane and ar r name represent any symbol name.

Common Object File Format (COFF) and Common Archive File Format (CAFF)

Table C-21

Filenames

Filenames can be any length. Filenames larger than 14 characters go into
the string table. Shorter filenames are padded with zeros.

The. fil e symbol containsa0 until the object fileislinked. At thetime,
it either points to the file header for the next filein the chain or the start of
the global storage area. Each. fi | e entry generates one, two, or three
auxiliary table entries. Thefirst entry lists the name provided with the
.filedirective. If the program isacompiled source file, the second entry
containsthe. i dent information from the compiler, such as the compiler’'s
name and version with the present date and time. The third entry contains
the assembler information, such as assembler identity and version.

NOTE. All entry information is controlled by the environment variable
| 9601 DENT. If thel 9601 DENT variable is not set, the assembler generates
no.ident entries.

If the source file is an assembly file, the second auxiliary table entry
contains the assembler information and the symbol table contains no third
entry.

Sections

The auxiliary table entries for a section have the format shown in
Table C-21.

Format for Auxiliary Table Entries

Bytes Declaration Name Description

0-3 long int x_scnlen section length

4-5 unsigned short x_nreloc number of relocation entries
6-7 unsigned short x_nlinno number of line numbers
8-23 - - unused (filled with zeros)

C-35

i960® Processor Software Utilities User's Guide

C-36

Tag Names

The auxiliary table entries for atag name have the format shownin
Table C-22.

Table C-22 Tag Name Entries
Bytes Declaration Name Description
0-5 - - unused (filled with zeros)
6-7 unsigned short x_size size of structure, union, and
enumeration
8-11 - - unused (filled with zeros)
12-15 long int x_endndx index of next entry beyond this
structure, union, or enumeration
16-23 - - unused (filled with zeros)
End of Structure
The auxiliary table entries for the end of structure have the format shown
in Table C-23.
Table C-23 Table Entries for End of Structure

Bytes Declaration Name Description

0-3 long int X_tagndx tag index

4-5 - - unused (filled with zeros)

6-7 unsigned short x_size size of , union, or enumeration
8-23 - - unused (filled with zeros)
Functions

The auxiliary table entries for afunction have the format shown in
Table C-24.

Common Object File Format (COFF) and Common Archive File Format (CAFF)

Table C-24 Table Entries for Function
Bytes Declaration Name Description
0-3 long int X_tagndx tag index
4-7 long int x_fsize size of function (in bytes)
8-11 long int x_Innoptr file pointer to line number
12-15 long int x_endndx the end index for functions
points to the symbol table entry
for the next function, except the
last function for the .file scope,
which points at the first static
symbol in the .file scope.
16-23 unsigned short x_tvndx unused (filled with zeros)
Arrays
The auxiliary table entries for an array have the format shown in
Table C-25.
Table C-25 Table Entries for Array

Bytes Declaration
0-3 long int

4-5 unsigned short
6-7 unsigned short
8-9 unsigned short
10-11 unsigned short
12-13 unsigned short
14-15 unsigned short
16-23 -

Name
X_tagndx
x_Inno
X_size
x_dimen][0]
x_dimen[1]
x_dimen[2]
x_dimen[3]

Description

tag index

line number of declaration
size of array

first dimension

second dimension

third dimension

fourth dimension

unused (filled with zeros)

C-37

i960® Processor Software Utilities User's Guide

C-38

End of Blocks and Functions

The auxiliary table entries for the ends of blocks and functions have the
format shown in Table C-26.

Table C-26 End of Block and Function Entries
Bytes Declaration Name Description
0-3 - - unused (filled with zeros)
4-5 unsigned short x_Inno number of lines in block
6-23 - - unused (filled with zeros)
Beginning of Blocks and Functions
The auxiliary table entries for the beginning of blocks and functions have
the format shown in Table C-27.
Table C-27 Beginning of Block and Function Entries

Bytes Declaration Name Description

0-3 - - unused (filled with zeros)

4-5 unsigned short x_Inno line number in source where
function begins

6-11 - - unused (filled with zeros)

12-15 long int x_endndx index of next entry past this
block

16-17 - - unused (filled with zeros)

Names Related to Structures, Unions, and
Enumerations

The auxiliary table entries for structure, union, and enumerations symbols
have the format shown in Table C-28.

Common Object File Format (COFF) and Common Archive File Format (CAFF)

Table C-28

Entries for Structures, Unions, and Enumerations

Bytes Declaration Name Description

0-3 long int X_tagndx tag index

4-5 - - unused (filled with zeros)

6-7 unsigned short x_size size of the structure, union, or
numeration

8-17 - - unused (filled with zeros)

Auxiliary Entry Declaration

The C language structure declaration for an auxiliary symbol table entry is
given in Example C-10. This declaration can be found in the header file
cof f. h.

Example C-10Auxiliary Symbol Table Entry

/*

*

*/

AUXI LI ARY ENTRY FORVAT

uni on auxent {

struct {
| ong x_t agndx; /* str, un, or enumtag indx */
uni on {
struct {
unsi gned short x_Inno;/* declaration |line nunber */
unsi gned short x_size;/* str, union, array size */

} x_Insz;
| ong x_fsize; /* size of function */
} x_m sc;
uni on {
struct { /* if ISFCN, tag, or .bb */
| ong X_|l nnoptr; /* ptr to fcn line # */
| ong x_endndx; /* entry ndx past block end */
} x_fcn;
struct { /* if ISARY, up to 4 dinen. */

continued [J

C-39

i960® Processor Software Utilities User's Guide

C-40

Example C-10 Auxiliary Symbol Table Entry (continued)

unsi gned short x_di men[DI MNUM ;
}ox_ary;
} x_fcnary;
unsi gned short x_tvndx; /* transfer vector index
(not used)*/

} x_sym
uni on {
char x_f name[AUXFI LNMLEN ; /[* File name for .file
synbol */
struct {

long x_zeroes; [/* zero indicating offset valid */
long x_offset; [/* synbol string table offset */
} x_n;

} x_file;

struct {
| ong x_scnl en; /* section length */
unsi gned short x_nrel oc; /* nunber of relocation

entries */
unsi gned short x_nlinno; /* nunber of |ine nunbers */
} x_scn;

struct {

| ong x_tvfill; [* tv fill value */

unsi gned short X_tvlen; /* length of .tv */

unsi gned short x_tvran[2]; /* tv range */

} ox_tv; /* info about .tv section (in auxent of
synbol .tv) */

/*

** 1960 processor-specific *2nd* aux. entry formats
*/

struct {

| ong X_sti ndx; /* sys. table entry */
} x_sc; /* systemcall entry */
struct {
unsi gned | ong x_bal ntry; /* BAL entry point */
} x_bal; /* BAL-cal | abl e function */

continued [

Common Object File Format (COFF) and Common Archive File Format (CAFF)

Example C-10 Auxiliary Symbol Table Entry (continued)

/*

** 1960 processor 2nd and 3rd aux. entry formats

*/

struct {

unsi gned | ong x_tinmestanp; /* identification tinme
st amp*/

char X_idstring[20]; /* producer identity string */

} x_ident;

char a[sizeof (struct synent)]; /* force aux to

synent size */
3

#defi ne AUXENT uni on auxent
#define AUXESZ si zeof (AUXENT)

String Table

Symbol table names longer than eight characters are stored next to each
other in the string table; each symbol name is delimited by aNULL byte.
The first four bytes of the string table are the size of the string table in
bytes; offsetsin the string table are therefore 4 or more.

In this example, the file has two symbols whose names are longer than
eight characters, | ong_name_1 and anot her _one. Thus, the string table
has the format shown in Figure C-3.

C-41

i960® Processor Software Utilities User's Guide

C-42

Figure C-3 String Table
Index
0 28
4) o n g
8 n' a' m'
12 e’ "1 o'
16 a' n e} t
20 “h e r
24 ‘o' n e o'

0SD321

The size of the string table in Figure C-3 is 28 bytes, which is equal to 4
bytes plus one byte for each character including the null terminator. The
index of | ong_nane_1 in the string table is 4 and the index of

anot her _one is16.

Access Routines

Access routines, found in the common object file library, can be used for
reading a common object file. These routines insulate the calling program
from having to know the structure of the object file.

Archive Library Format

Figure C-4 represents atypical archive. The figure shows an object library
consisting of n members.

The definitions of four elements constitute the common archive file format
(CAFF):

e archiveidentification string

e one or more members

* symbol table

* name or spelling pool

The following sections describe each of these elementsin greater detail.

Common Object File Format (COFF) and Common Archive File Format (CAFF)

Figure C-4 An Archive Library

Archive Identification String

Archive Header

Member 0O Symbol Table

Archive Header

Member 1
Extended Filename Table
Member 2 Archive Header
Member Data
Member K

Member n-1

0OsSD319

The Archive Identification String

The archive identification string identifies afile as an archive. Each
archive library beginswith a special string. For example, these two lines
define the archive identification string:

#define ARMAG "! <arch>\n"
/*archive identification string*/
#defi ne SARVAG 8
/*length of archive identification string*/

C-43

i960® Processor Software Utilities User's Guide

This string appears as the first eight charactersin an archive. Thisstring
must be present, or the archiver cannot recognize thisfile as common
archive file format (CAFF).

Archive Members

Figure C-5

Archives can contain the following combinations of file types:
e COFF and ASCII text

e COFF only

e b.out format only

Archive members are arranged in sequential order within the library.
Figure C-5 represents atypical member, such as Member K of the archive
shown in Figure C-4.

An Archive Member

Archive Header

+ Member name
» Text size

«+ File information

Contents

Padding Character
("\n" pad to even byte)

0OSD320

Common Object File Format (COFF) and Common Archive File Format (CAFF)

The member header begins with the member name to identify the module
within the archive. Several additional entries, containing control
information, follow thisstring. A specia trailer string terminates each
archive member header.

The structure in Example C-11 defines the archive member header:

Example C-11 Archive Member Headers

#defi ne ARFMAG "'\ n" /*header trailer string*/
struct ar_hdr [*menber header*/
{
char ar_name[16] ; /*/-term nated nenber nane*/
char ar_date[12]; / *menber dat e*/
char ar_uid[6]; / *menber user id*/
char ar_gid[6]; / *menber group id*/
char ar_node[8] ; /*menber node(octal)*/
char ar_size[10]; [*menber size*/
char ar_fmag[2] ; /*header trailer string*/
3

Numeric information in the member header is stored in decimal format,
except for ar _node, which isformatted in octal. You can look at the
information stored in the member headers of an archive by using the
archiver’s table-of-contents control with the verbose modifier on the
command line.

Table C-29 lists archive member headers, their sizes, and their contents.

C-45

i960® Processor Software Utilities User's Guide

Table C-29 Size and Contents of Archive Member Headers

Bytes Field Contents

0-15 ar_name; field contains the name of the member, padded
with a slash (/) followed by blanks. The archiver
derives this name from the pathname of the
external file when it adds the member to the
archive. The member name cannot be changed,
although the member may be replaced, deleted,
or moved within the archive.

16-27 ar_date field shows the date and time of the external file
when initially archived or updated in the archive.
This date is returned from a system call; format of
the date is system-dependent.

28-33 ar_uid fields contain the user and group identification

34-39 ar_gid numbers of the user owning this member. On
Windows hosts, these fields contain zero.

40-47 ar_mode field is derived from the system and contains an
octal representation of the file permissions on the
external file at archival time.

48-57 ar_size field contains the size, in bytes, of the member.
The member’s size does not include the extra
byte of padding, if present at the end of the
archive member. Each archive file member starts
on an even byte boundary, with a single new-line
pad between members, if necessary. An archive
member may not contain any empty areas.

58-59 ar_fmag field contains the header trailer string (\n).

When you add members with long names using the replace or update
command, the archiver creates an extended filename table to store member
names longer than 14 characters. If the archiver creates the extended
filename table, the table follows the second archive header. If you strip the
symbol table, the extended filename table follows the first archive member
(see Figure C-4).

Common Object File Format (COFF) and Common Archive File Format (CAFF) C

The Symbol Table

The first part of an archive (designated Member 0 in Figure C-4) isthe
archive symbol table. The archiver generates this structure when you add
the first COFF or b.out format file to the archive. It is updated whenever
necessary to reflect the current contents of the archive.

The symbol table is transparent to the user and inaccessible to a user of the
archiver. Itisimplemented as a member of the archive, with a standard
archive header. The symbol table has a name of zero length, that is:

ar_nane[0]=="\0" ('\0" neans NULL, the string terninator)

Thear _dat e field in the symbol table header reflects the date of the
archive's creation. Figure C-6 illustrates an archive symbol table.

The symbol table consists of the following fields:

e Tota number of symbolsin the archive: 1 word.

« Array of offsets to member headers: 1 word per symbol.

e String table of null-terminated external symbols: 1 string per symbol.

The symbol table enables the linker to make a more efficient pass over
object libraries.

C-47

i960® Processor Software Utilities User's Guide

Figure C-6 The Archive Symbol Table

member O header

Symbol Table Header
Y (with zero-length name)

Number of Symbols
in Archive

Offsets to Members
(one per symbol)

member O test

Name String Table
(one per symbol)

["\n" pad to even byte] member 0 padding
(if necessary)

0sD318

C-48

HP/MRI |EEE 695
Object File Format

This chapter describes the Microtec Research Inc./Hewlett-Packard
Company version of |EEE-695 object module format, supporting
assemblers, compilers, linkers and debuggers.

The material for this chapter is taken from the HP/MRI |EEE-695 Object

Module Format Specification, Rev. 4.0, August 16, 1989. This chapter

contains only those parts of the HP/MRI |EEE-695 specification that you

need to understand output for the COFF to | EEE-695 converter (cvt960).

This chapter omits the following:

» Target-specific information not pertinent to the i960® processor
family.

e Translator output information for high-level languages other than C.

* Memory location information for relocatable modules. Only position-
dependent (absolute) modules are described.

« Any other information not relevant to debugging and using output
from the cvt960 utility.

If you need a complete IEEE-695 object module specification, you should
consult the IEEE or MRI/HP version, as appropriate for your application.
The Related Publications section in Chapter 1 provides ordering
information for both.

The IEEE Trial Use 695 standard describes both an ASCII and a binary
version of the format. MRI and HP implement the more compact binary
form. Derived from the IEEE Trial Use Standard 695, the HP/MRI
specification includes extensions and limitations required to support MRI
and HP products.

D-1

i960® Processor Software Utilities User's Guide

D-2

Terminology

Table D-1

The IEEE specification defines aterm that is redefined in this chapter. The
term appliesto the basic division of an object filethat is referred to asa
"command". Since this conflicts with the IEEE-695 use of command, the
basic unit is renamed to be a"record”. Object module records are
predefined with arecord type byte in the range $E0 through $FF. The term
library is used throughout to mean a single file with more than one
relocatable module. Theterm MAU is used throughout to mean minimum
addressable unit; e.g. a byte (8 bits) on the i960® processor.

Table D-1 shows the initial bytes of IEEE formats described in this section.

Initial Bytes of IEEE Elements

Prefix Description

$00-$7F Simple number in the range 0 to 127, or 7-bit ASCII string with
length O to 127.

$80-$84 Number larger than 127 or negative. 0 to 4 bytes follow. $80 is
used as a place holder and indicates that the value was not
provided.

$89-$9F Unused.

$BE-$BF Function values.
$CO-$DA Variable letters (null, A-Z).
$DB-$DD Unused.

$DE-$DF Extension length. If DE, the next byte is the length of an 8-bit
string between 0 and 255 bytes long. If DF, the next two bytes in
high-order/low-order format are the length of an 8-bit string
between 0 and 65535 bytes long.

$EO-$FA Record headers.
$FB-$FF Unused.

HP/MRI 1EEE 695 Object File Format D

Nomenclature

The following nomenclature is used throughout this chapter:

e Braces{ } surround arequired field.

e Brackets[] surround an optional field.

» Dollar Signs ($) precede character representations of hexadecimal
numeric values.

Number Format

Numbers are used to define byte counts for fields and to specify numeric

parameters. These specifications can have two forms:

* If thevalueis between 0-127 decimal, the number is $0- $7F.

e If thevaueisgreater than 127 decimal, then the number must be
defined by 1 byte of count with the high order bit set ($80) followed
by the indicated number of bytes of numeric data with the most
significant byte first. The range for the count isusually 0-4
(i.e. $80- $84) and can be 0-8 on some installations. Thisform isaso
valid for numbersin the range 0-127.

For example, $7FFF isencoded as { $82} { $7F} { $FF} (3 bytes).
0 can be encoded as{ $00} or { $81}{$00}. 232 can be encoded as
{$85}{01}{00}{00) {00} {00}, €tc.

« Omitted optional fieldsin records may be represented by a byte count
of zero. Example: { $80}

¢ Numeric fields are represented in the chapter as{n} and { x} .

* Numeric fieldsin miscellaneous records are represented as{ v} .

Name Format

Name fields are represented in this chapter by {1 d} and consist of 1 byte
of count (0-127) followed by the indicated number of ASCII characters.
The HP/MRI format extends the | EEE specification to alow the use of any
printable ASCII character in aname. Characters are represented as
hexadecimal valuesin the file but are represented as quoted charactersin
this chapter for improved readability, as follows:

name "ABCD' = {$04}{$41}{$42}{$43}{$44}

D-3

i960® Processor Software Utilities User's Guide

D-4

Name fields in miscellaneous records are represented as{ s} .

The |EEE format allows only for printable strings. Thisimplementation
allows for non-printable strings.

An extension byte allows for more than 127 characters. If the reader
encounters a DE character, the next one byte isthe string length. The one
byte length allows strings from 0 to 255 characters. If the reader
encounters a DF character, the next two bytes are the string length. The
two byte string allows 0 to 65535 characters.

Information Variables

Information variables convey information to a symbolic debugger or linker
about various constructs within the program. The information conveyed
relates to symbols, section addresses and lengths, starting addresses, and
current PC value. These are represented by an alphabetic | etter optionally
followed by a number:
G Execution starting address.
In Address of public symbol n.
Nn Address of local symbol n.
Pn The program counter for section n; implicitly changes with each

LR, LD, or LT that applies to section n in the Data part.
Sn The size, in minimum address units (MAUS), of asection n.
Wn nisO0through 7; Wn isthefile offset, in bytes, of the n’'th part of

the object file from the beginning of thefile.

The number, if present for symbol definitions, identifies which of severa
variables of the same typeisreferenced. This number isreferred to asan
"index" in the discussion that follows. There are 3 different series of
indices: external reference indices, section indices and public
name/type/local name indices. Indices must be unique within a module for
each series and must be included with all variable specifications except G.
Public/local (1/N) type symbol indices between 0 and 31 are reserved for
specia class symbols. Normal symbol indices begin at 32. Therefore, "13"
represents public symbol number 3 in the current module.

HP/MRI 1EEE 695 Object File Format D

Specification of G variables must not include anindex. The |IEEE standard
has been extended to require index valuesfor L, S, and P variables (these
are all section indices). The binary encoding for the letters A-Z is $C1- $DA
respectively.

Line Numbers

Object modules can have a significant number of line number records
included in typical situations. To minimize the impact upon the size of the
object module, the HP/MRI standard defines only one NN record per
sourcefile. A line number is specified by ATN and ASN records only.

Types

Symbol types supply information to debug and analysistoolsto aid in
determining the size, organization, and type of program object referenced
by the symbol. Each symbol has an associated type number and/or a
mnemonic "code letter” that serves as a shorthand identifier for the typein
the object file and elsewhere.

Complex Types

Table D-2 identifies the supported high level complex types. These types
must be explicitly defined using an |IEEE 't y’ directive (see the Define
Types (TY) section) in order to correctly represent the use of the symbol
typein the high-level language source code. Table D-2 shows what
parameters are used to define the type, where these parameters appear in
the IEEE, and the NN and TY records which define the type.

Table D-2 HP/MRI IEEE-695 Object-file Representation of High-level Types
Definition Type-parameters IEEE Record/Field
Unknown type (sized) ‘type name’ NN/{ld}
Mnemonic: ! I ($21) TY/Kn3}
size in MAUs TY/n4}
generalized C language 'enum-tag-name’ NN/AId}
continued [

D-5

i960® Processor Software Utilities User's Guide

Table D-2 HP/MRI IEEE-695 Object-file Representation of High-level Types
(continued)
Definition Type-parameters IEEE Record/Field
enumeration N ($4E) TY/Kn3}
Mnemonic: N 0 TYHn4}
size of enumeration in MAUs TYHn5}
1st enum constant name TYHn6}
1st enum constant value TYAn7}
additional names/values [...]
32 bit pointer to another type (name or null-name) NN/AId}
Mnemonic: P (pointer) P ($50) TY/n4}
type index of pointer target TYAn4}
data structure 'structure-tag-name’ NN/A{Id}
Mnemonic: S (structure) S ($53) TYANn3}
size of structure (in MAUS) TYHn4}
member 1 name TYHn5}
member 1 type index TYHn6}
member 1 MAU offset TYANn7}
member 2 name TY{n8}
member 2 type index TYANn9}
member 2 MAU offset TY/{n10}
[additional members] [...]
union of members ‘union-tag-name’ NN/A{lId}
Mnemonic: U (union) U ($55) TYAn3}
size of union (in MAUs) TYHn4}
member 1 name TYHn5}
member 1 type index TYHn6}
member 1 MAU offset TYANn7}
member 2 name TY/{n8}
member 2 type index TYANn9}
member 2 MAU offset TY/{n10}

D-6

[additional members]

]

continued [J

HP/MRI 1EEE 695 Object File Format

Table D-2
(continued)

HP/MRI IEEE-695 Object-file Representation of High-level Types

Definition

Type-parameters

IEEE Record/Field

C array with lower bound = 0 (name or null-name) NN/AId}
Mnemonic: Z (zero based array) A ($5A) TYANn3}
type index of component TYAn4}
high bound (note 1) TYHn5}
Bitfield type ‘type name’ NN/AId}
Mnemonic: g g {$67} TYANn3}
signed (0O=unsigned,1=signed) TYH{n4}
size (in bits, 1 through n) TYHn5}
base type index TYHn6}
procedure with compiler ‘procedure-name’ NN/A{ld}
dependencies X ($78) TYKn4}
Mnemonic: x (executable) attribute (note 2) TY/{n4}
frame_type (note 4) TYAn5}
push_mask (note 5) TY{n6}
return_type TYANn7}
of arguments (note 3) TY/{n8}
[1st argument type] TY/[n9]
[2nd argument type] TY/[n10]

[additional argument types]
level (note 6)

TY/[n11 thru nN]
TYH{n9 or TY/nN + 1}

NOTE 1: When the upper limits in array types A and Z are unknown, as for external references, the number of elements
should be set to -1.
NOTE 2: The attribute parameter of the function type (X or x) is bit mask of:
Bit Meaning Bit Meaning
0 Unknown frame - Set if this 5 PASCAL nested (always clear)
is a leaf procedure 6 no push mask available
1 Near (always clear) (always set)
2 Far (always clear) 7 Interrupt (always clear)
3 Re-entrant (always set)9-32 To be defined
4 ROMable (always set)
NOTE 3: # of arguments (-1 if unknown).
NOTE 4: The 'frame-type’ indicates the type of stable frame used by the routine. cvt960 sets the frame-type to O.
NOTE 5: The 'push_mask’ is always set to 0.
NOTE 6: the 'level’ parameter is always set to 0.

D-7

i960® Processor Software Utilities User's Guide

D-8

Table D-3

Built-in Types

Table D-3 identifies the implicit or "built-in" types supported by the

cvt 960 program. The built-in types represent C type definitions for
common scalar types (and pointers to common scalar types) that are
implicit to the compiler, assembler, linker, and debugger. Asfor complex
types, the type number or mnemonic letter code for built-in typesimplies
the size and organization of the program object. The type number also
specifies a default type name for use by HP or MRI debugging toolsin
referring to the built-in type.

Built-in types normally do not require additional information other than the
type number to completely describe them. Only the number of the built-in
typeisused inan ATN record describing a symbol having one of the
implicit types. Itisaso the number used in the definitions for more
complex types that have elements that are of built-in type. The shorthand
notation for implicit types is intended to minimize the size of object
modules by providing a short notation for the common subsets of more
general types.

The interpretation of built-in types by cvt 960 is shown in Table D-3.

The following assumptions relating to typedefs are made by HP and MRI
tools:
e Type"char" isassumed to be signed.
» Thesize assumed for a pointer is the natura size for the target
(i.e. 1960 = 4 minimum address units).

HP/MRI IEEE-695 Object-file Built-in Types

Mnemonic Definition Default Type Name

0 ? unknown type 'UNKNOWN TYPE’

1 V (void) procedure returning void void’

2 B (byte) 8-bit signed 'signed char’

3 C (char) 8 bit unsigned ‘unsigned char’

4 H (halfword) 16 bit signed 'signed short int’
continued [J

HP/MRI 1EEE 695 Object File Format

Table D-3

HP/MRI IEEE-695 Object-file Built-in Types (continued)

10
11
12

15
26-31
32
33

34
35
36
37
38
39
42
43
44

58-255

Mnemonic

I (int)

L (long)

M

F (float)

D (double)
K (king size)

J (jump to)

Definition

16 bit unsigned

32 bit signed

32 bit unsigned

32 bit floating point
64 bit floating point

extended precision
floating point

code location
reserved for future use
pointer to unknown type

pointer to procedure
returning void

pointer to 8 bit signed

pointer to 8 bit unsigned
pointer to 16 bit signed

point to 16 bit unsigned

point to 32 bit signed

pointer to 32 bit unsigned
pointer to 32 bit floating point
pointer to 64 bit floating point

pointer to extended precision
floating point

reserved for future use

Default Type Name
‘unsigned short int’
'signed long’
‘unsigned long’
float’

'double’

‘long double’
(see note 1)

‘instruction address

'UNKNOWN TYPE’
'void

'signed char’
‘unsigned char’
'signed short int’
'unsigned short int’
'signed long’
‘unsigned long’
float’

'double’

'long double’
(see note 1)

D-9

D i960® Processor Software Utilities User's Guide

Object File Components

An object file is divided into seven component parts. Each partisa
contiguous group of bytes within the file. The component parts may occur
in any order within the file with the exception that the Header must occur
first and the Module End must occur last. The Header part contains
information pointing to the location of the other parts within thefile.
Therefore, the various file parts do not necessarily have to be read in the
order in which they appear. The component parts listed below are
described in the following sections:

Header Part

Module Beginning (MB) - $E0

Address Descriptor (AD) - $EC

Assign Value to Variable WO (ASWO0) - $E2D700
Assign Valueto Variable WI (ASW1) - $E2D701
Assign Valueto Variable W2 (ASW?2) - $E2D702
Assign Valueto Variable W3 (ASW3) - $E2D703
Assign Value to Variable W4 (ASW4) - $E2D704
Assign Valueto Variable W5 (ASWS5) - $E2D705
Assign Valueto Variable W6 (ASWE6) - $E2D706
Assign Valueto Variable W7 (ASW?7) - $E2D707

AD Extension Part (ASWO)

Variable Attributes (NN) - $F0
Variable Attributes (ATN) - $F1CE
Variable Values (ASN) - $E2CE

Environment Part (ASW1)

Variable Attributes (NN) - $F0
Variable Attributes (ATN) - $F1CE
Variable Values (ASN) - $E2CE

Section Definition Part (ASW2)
Section Type (ST) - $E6
Section Size (ASS) - $E2D3
Section Base Address (ASL) - $E2CC

D-10

HP/MRI 1EEE 695 Object File Format D

External Part (ASW3)

Public (External) Symbol (NI) - $E8
Variable Attribute (ATI) - $F1C9
Variable Values (ASl) - $E2C9

Debug Information Definition Part (ASW4)

Declare Block Beginning (BB) - $F8

Declare Type Name, filename, line numbers, function name, variable
names, etc.

(NN) - $Fo

Define Type Characteristics (TY) - $F2

Variable Attributes (ATN) - $F1CE

Variable Values (ASN) - $E2CE

Declare Block End (BE) - $F9

Data Part (ASW5)
Current Section (SB) - $E5
Current Section PC (ASP) - $E2D0
Load Constant MAUs (LD) - $ED
Repeat Data (RE) - $F7

Trailer Part (ASW6)

Execution Starting Address (ASG) - $E2C7
Module End (ME) - $E1

Header Part

The header part contains information pointing to the location of other parts
within thefile.

Module Begin (MB)

The MB record must be the first record in the module.

{$E0}{1d1}{1d2}

$EO Record type
I d1 Processor (e.g. "80960CORE")
I d2 Module name

D-11

i960® Processor Software Utilities User's Guide

Table D-4 shows the i960® processor names that tools consuming
HP/MRI IEEE-695 object files recognize in the field of the MB

record.

Table D-4 Processor Names
Name Processor Family
80960CORE Intel iI960 core architecture
80960KA Intel 1960 KA, SA
80960KB Intel i960 KB, SB
80960CA Intel 1960 CA, CF
80960JX Intel 960 JA, JD, JF, JL, RP
80960HX Intel 1960 HA, HD, HT

Address Descriptor (AD)
The AD record describes the characteristics of the target processor.

{$EC}H{8) {4}{$CC}

$EC Record type

8 Number of bits/minimum address unit

4 Number of minimum address units constituting the largest

address form
$CC ('L") Low address of field contains least significant byte

Assign Value To Variable WO (ASWO0)

The ASWO record contains a file byte offset pointer to the AD Extension
record relative to the beginning of the file. A zero (0) value indicates that
this extension is not included in the file.

{ $E2} {$D7}{ 00} { n}
n Byte offset in file in number format (see the AD Extension Part
section)

D-12

HP/MRI 1EEE 695 Object File Format

Assign Value To Variable W1 (ASW1)

The ASW1 record contains afile byte offset pointer to the Environmental
record relative to the beginning of thefile. A zero (0) value indicates that
this extension is not included in the file.

{$E2}{$D7}{01}{ n}
n Byte offset in file in number format (see the AD Extension Part
section)

Assign Value To Variable W2 (ASW2)

The ASW2 record contains a byte offset pointer to the module Section part
relative to the beginning of the module. A zero (0) value indicates that this
part is not included in the module.

{ $E2} {$D7} { $02} { n}
n Byte offset in file in number format (see the AD Extension Part
section)

Assign Value To Variable (ASW3)

The ASW3 record contains a byte offset pointer to the module Externa
part relative to the beginning of the module. A zero (0) value indicates that
this part is not included in the module.

{ $E2} { $D7} { $03} { n}
n Byte offset in file in number format (see the AD Extension Part
section)

Assign Value To Variable W4 (ASW4)

The ASW4 record contains a byte offset pointer to the module Debug
Information definition part relative to the beginning of the module. A zero
(0) value indicates that this part is not included in the module.

{ $E2} { $D7} { $04} { n}
n Byte offset in file in number format (see the AD Extension Part
section)

D-13

i960® Processor Software Utilities User's Guide

D-14

Assign Value To Variable W5 (ASWS5)

The ASWS record contains a byte offset pointer to the module Data part
relative to the beginning of the module. A zero (0) value indicates that this
part is not included in the module.

{ $E2} { $D7} { $05} { n}
n Byte offset in file in number format (see the AD Extension Part
section)

Assign Value To Variable W6 (ASW6)

The ASW6 record contains a byte offset pointer to the module Trailer part
relative to the beginning of the module. A zero (0) value indicates that this
part is not included in the module.

{ $E2} { $D7} { $06} { n}
n Byte offset in file in number format (see the AD Extension Part
section)

Assign Value To Variable (ASW7)

The ASWT record contains a byte offset pointer to the ME record relative
to the beginning of the module.

{$E2} {$D7} {$07}{ n}
n Byte offset in Filein number format (see the AD Extension Part
section)

AD Extension Part

The AD Extension Part contains information describing how the object
module was created. This part islocated after the header part and the AD
record. It ispointed to by the WO portion of ASWO0. An NN record with a
unique index associates ATN records defining the additional information.
For more information on the syntax of records in the AD Extension Part,
see the HP/MRI |EEE 695 Format Object File Semantics section. The AD
Extension Part has the following format:

NN: {$FO}{n1}{Id}
ATN: {$F1}{$CE} {n1}{n2}{n3}[x1][x2] [Id]

HP/MRI 1EEE 695 Object File Format

Table D-5

$FO NN record type

ni Symbol name (NN record) type

I d Symbol name

$F1CE ATN Record type

nl Symbol name index (must be the same index as was specified for
the NN record)

n2 Symbol type index (unused, set to 0)

n3 Attribute definition: The attribute definitions for the AD

Extension Part appear in Table D-5.

Attribute Definitions for the AD Extension Part

n3 Description

37 Object format version number; requires two extra fields [x1] and [x2]
defining the version number and revision level respectively.
The current HP/MRI version supported is 4.0.

38 Object format type; requires one extra field [x1] defining the type:
1 Absolute (not relinkable)

39 Case sensitivity; requires one extra field [x1].
2 Do not change the case of symbols

Environmental Part

The Environmental Part contains information relating to the host
environment where the object module was created. It islocated after the
Header Part and is pointed to by the W1 portion of ASW1. The
organization of this part is similar to the AD Extension part described
earlier. For more information on the syntax of recordsin the
Environmental Part, see the HP/MRI IEEE 695 Format Object File
Semantics section. The ATN records have the following format:

NN: {$FO}{n}{Id}

ATN: {$SF1}{$CE}{n1}{n2}{n3} [x1[x2[x3[x4[x5[x6[1d]11111]
FO NN record type

ni Symbol name (NN record) type

D-15

i960® Processor Software Utilities User's Guide

I d Symbol name
$F1CE ATN record type
nl Symbol name index (must be same index as specified for its

associated record)

n2 Symbol type index (0 = unspecified)

n3 Attribute definition: The attribute definitions for the
Environmental Part appear in Table D-6 below.

Table D-6 Attribute Definitions for the Environmental Part
n3 Description
50 Creation date and time; requires one extra field [x1[x2[x3[x4[x5[x6]111]]:

51

52

53

54

55

x1 Year (e.g., 1990)

X2 Month (1 -12)

x3 Day(1 - 31)

x4 Hour(0 - 23)

x5 Minute (0 - 59)

x6 Second (0 - 59)

The date and time are derived from the date and time of the COFF file. The year is
encoded as a decimal number, not four hexadecimal digits. There is no ASN
record.

Command line text; requires one extra field [Id] containing the command line. The
command line is derived from the cvt960 command line. There is no ASN record.

Execution status; requires one extra field [xl]: 0 Success
There is no ASN record.

Host environment; requires one extra field [x1]: 4 HP-UX
There is no ASN record.

Tool and version number used to create the module; requires three extra fields [x1],
[x2], and [x3] defining the tool, version, and revision number. An optional fourth field
[x4] is an ASCII character that defines the revision level (e.g. A, B, etc). The [x1]
field contains 210, the cvt960 tool code. There is no ASN record.

Comments; requires one extra field [Id] specifying the comment string. There is no
ASN record.

D-16

HP/MRI 1EEE 695 Object File Format

External Part

The External part contains records used to define global symbols from
COFF. Variable miscellaneous records are also allowed in the External
part. For more information on the syntax of records in the Externa and
Public parts, see the HP/MRI |EEE 695 Format Object File Semantics
section.

Public (External) Symbol (NI)

The Public Symbol provides for Public symbol definition and is optionally

included in amodule. Public symbol indices begin at 32. Indices0

through 31 are reserved.

{$B8}{n}{Id}

$B8 Record type

n Public name index number, unique within an object file (must
be> 31,0 - 31 reserved)

I d Symbol name

Attribute Records (ATI)
{$F1}{$C9} {n1}{n2}{n3}{n4}
$F1C9 ATI record type

nl Symbol name index (this must be the same index as specified for
the M record)

n2 Symbol type index as follows:
0 Unspecified

2 |Initialized data byte
5 Initialized data word
7 32 bit double word
10 32 hit floating point
11 64 hit floating point
12 10 or 12 byte floating point
15 Instruction address
n3 Attribute definition: The attribute definitions are described in
Table D-7.

D-17

D

i960® Processor Software Utilities User's Guide

D-18

Table D-7

n4 If n2 isnon-zero, number of elementsin the symbol type
specified in n2

Attribute Definitions for the External Part

n3 Description

19 Static symbol generated by assembler. There is an ASI record
specifying the address value.

Value Records (ASI)
The ASI record defines values for variables.

{$E2} {$C9} {n1}{n2}

$E2C9 Record type

nl Symbol index (this must be the same index as specified for the
NI record)

n2 value of symbol

Section Part

The Section part contains information defining the sections of the module.
A "section™ in this context is a contiguous area of memory. It may be
absolute or relocatable, and may or may not have aname. All data
minimum address units must be defined in a section.

For more information on the syntax of records in the Section Part, see the
HP/MRI |EEE 695 Format Object File Semantics section.

Section Type (ST)

Each section must have exactly one section type record.

ASL and ASS records must appear after the ST record they refer to.
${E6}{n1}{1}[1d][n2][n3][n4]

$E6 Record Type

ni Section index (index must be greater than zero and unique to this
modul€)

HP/MRI 1EEE 695 Object File Format D

Section type (only the new section types are described here)

AS {$C1}{$D3} normal attributes for absolute sections.
Sections from different modules with these attributes,
whether they have the same name or not, are considered
to be unrelated.

ASP {$C1}{$D3}{$D0} absolute code

ASD {$C1}{$D3}{$C4} absolute data

Section Size (ASS)

The ASS record is required for all sections and defines the size for this
section.

{$E2} {$D3} {n1}{n2}

$E2D3 Record type

ni Section index An ST record must have occurred before this ASS
record.

n2 Section size (in minimum address units). This expression must

be a simple number.

Section Base Address (ASL)
ASL records specify the section base address.

{$E2}{$CC} {n1}{n2}

$E2CC Record type

nl Section index (this must be the same index as specified for the
ATN record)

n2 Section Base address (in minimum address units)

Debug Information Part

The Debug Information part contains records that define how to determine
the symbol related information for amodule at execution time. Thisis
required for debuggers that provide high-level debugging capabilities.

For information on the syntax of recordsin the Debug Information Part,
see the HP/MRI |EEE 695 Format Object File Semantics section.

D-19

i960® Processor Software Utilities User's Guide

D-20

Block Begin (BB)

The BB records are an extension to the |[EEE-695 Trial Use standard.

They provide definitions of debugging information related to the high level

language definitions for types, scope and line numbers. They also provide

assembly level language definitions for modules and local symbols. A

block beginning with a BB is terminated with a BE record. BB records can

be nested according to rules described below. Nested BB blocks can be
used to capture scoping information. The types of BB blocks include:

BB1 Type definitions local to a module.

BB3 A module. A non-separable unit of code, usualy the result of a
single compilation, i.e. the symbols associated with a COFF
.filesymbol.

BB4 A globa subprogram.

BB5 A source file line number block.

BB6 A local (static) subprogram.

BB10 Anassembler debugging information block.

BB11 Themodule portion of a section.

The following list describes features of some of the blocks.

« BB1, BB3 and BB5 blocks usually occur together and in that order.
« BB1 blocks can be absent for modules that declare no local types.

* BB5 blocksimmediately follow BB3 blocks in this implementation.
* A BB5 cannot occur without a BB3.

¢ Consecutive BB3 and BB5 blocks must refer to the same module.

HP/MRI 1EEE 695 Object File Format

Block Nesting. For asummary of block nesting rules, see Table D-8
below.

Modul e- Scope Type Definitions (BB1)
NN and TY records
Modul e- Scope Type Definitions End (BE1l)

Hi gh Level Modul e Bl ock Begin (BB3)
A obal Variables (NN, ATN8, ASN)
Modul e- Scope Variabl es (NN, ATN3, ASN)

Modul e- Scope Function Bl ock Begin (BB6)
Local Variables (NN, ATN, ASN)
Modul e- Scope Function Bl ock End (BE6)
A obal Function Bl ock Begi n (BB4)
Local Variables (NN, ATN, ASN)
Local Function Bl ock Begin (BB6) H gh | evel
Local Variables (NN, ATN, ASN) Mdul e Bl ock

Local Function Bl ock End (BE6) (one for each
A obal Function Bl ock End (BE4) hi gh-1 evel
Hi gh Level Moddul e Bl ock End (BE3) nodul e)

Source File Block Begin (BB5)
NN, ASN, ATN, |ine nunbers in source
Source File Block End (BE5)
Assenbly Modul e Bl ock Begin (BB10)
Conpi | er Generated d obal / Externa
Vari abl es (NH, ATK16, ASK)
Conpi | er Generated Local Variables (NH
ATK16, ASK)
Assenbl er Section Bl ock Begin (BB11)
Assenbl er Section Block End (BE1ll)
Assenbl er Section Bl ock Begin (BB11)
Assenbl er Section Block End (BE1ll)
Assenbly Modul e Bl ock End (BEL0)
Assenbly Modul e Bl ock Begin (BB10)
A obal / Extern Vari abl es (KN, ATN19, ASN)
Local Variables (KK, ATN19, ASN)
Assenbl er Section Block Begin (BBII) Assenbly Level
Assenbl er Section Block End (BElI) Modul e Bl ock
(one for each
Assenbl er Section Bl ock Begin (BB11) assenbly | evel
Assenbl er Section Block End (BElI) nodul e)
Assenbly Modul e Bl ock End (BELO0)

D-21

i960® Processor Software Utilities User's Guide

Table D-8 below illustrates which of the blocks under Inner can be nested
within the blocks listed under Outer. Some of the blocks require an outer
block. For example, a BB4 block requires that its outer, enclosing block be
aBB3. Smilarly, aBB1 or BB2 block requires that its outer, enclosing
block be the Debug Part, or debug.

Table D-8 Summary of Permitted Block Nesting

Inner Outer

BB1 BB2 BB3 BB4 BB5 BB6 BB10 BB11 debug
BB1 no no no no no no no no yes
BB2 no no no no no no no no *
BB3 no no * * no * no no yes
BB4 no no required no no no no no no
BB5 no no no no * no no no yes
BB6 no no yes yes no * no no no
BB10 | no no no no no no * no yes
BB11 no no no no no no required no no

* Supported by HP/MRI-695 but not produced by cvt960.

The format for each block typeis described below:

Block Type 1 - unique type definitions for module

{$F8}{$01}{0){Id}

$F8 Record type

$01 Block Type 1 - unique typedefs for module
0 Block sizein bytes (0O = unknown)

I d Module name (from COFF . fi | e symboal).

Block Type 3 - high level module scope beginning

{$F8}{$03}{0}{Id}
$F8 Record type
$03 Block Type 3 - high level module scope beginning

D-22

HP/MRI 1EEE 695 Object File Format

0 Block sizein bytes (0 = unknown)
I d Module name (must be the same name as specified for BB1)
Block Type 4 - global function

{ $F8}{$04}{0}{1d}{0}{n3}{n4}
$F8 Record type
$04 Block Type 4 - global function

0 Block sizein bytes (0 = unknown)

I d Function name

0 Number of bytes of stack space required for local variables
(in minimum address units) (0 = unknown)

n3 Type index for return value parameter and function information
(‘X type), (0 = unknown)

n4 The absolute address of the beginning of the code block.

Block Type 5 - filename for source line numbers

{$F8}{$05}{0}{ ! d}
$F8 Record type

$05 Block Type 5 - filename for source line numbers
0 Block sizein bytes (0 = unknown)
I d Source filename

Block Type 6 - local function
{$F8}{$06}{0}{1d}{n2}[n3] {n4}

$F8 Record type
$06 Block Type 6 - local function (static)

0 Block sizein bytes (0 = unknown)

I d Function name

n2 Number of bytes of stack space required for local variables (in
minimum address units)

n3 Type index for return value parameter and function information
(’x" type) (0 = unspecified)

n4 Offset (in minimum address units). The offset is the absolute

address of the beginning of the code block.

D-23

i960® Processor Software Utilities User's Guide

D-24

If the function name does not exist (length = 0), thisis an unnamed block
used for variable scoping only.

Block Type 10 - assembler module scope beginning
{$F8}{$0A} {0} {1 d}{Id}[n2][Id][n3[n4[n5[n6[n7[n8]]1]11]]

$F8
$0A
0

Id
Id
n2

n3
n4
n5
n6
n7
n8

Record type

Block Type 10 - assembler module scope beginning

Block sizein bytes (0O = unknown)

Name of the source file (COFF .file symbol)

Zero length string

Tool type: if a. gl obal _non_i ni t module, thisfield contains
210 (tool code for the cvt960). Otherwise, if the assembler
outputs an asmid this field contains 209 (tool code for the
asm960) or if there is no asmid thereisno n2.

Version and revision in string format: if n2 is 210, the version
and revision of cvt960 isgiven; if n2 is 209, the version and
revision of asm960 isgiven. If thereisnon2, thereisnol d.
Y ear (e.g., 1988) (if produced by COFF)

Month (1-12) (if produced by COFF)

Day(1-31) (if produced by COFF)

Hour (0-23) (if produced by COFF)

Minute (0-59) (if produced by COFF)

Second (0-59) (if produced by COFF)

Thefirst Id field in the BB10 record holds the value of the . fi | e symbol
from COFF,; either a. ¢ filename or an asmfilename.

Block Type 11 - module section
{ $F8} {$0B} { 0} {1 d}{n2}{n3}{n4}[n5]

$F8
$0B
0
Id
n2

Record Type

Block Type 11 - module section

Block sizein bytes (0O = unknown)

Zero length name (section name already defined)
Section type

0 Mixture of code, data, etc.

HP/MRI 1EEE 695 Object File Format

n3 Section index
n4 Offset (in minimum address units)

Optional fields may be null; but if any field is null and alater field is
present, the omitted field must be filled with the { $80} construct. The
relationship of blocks to variable attribute and variable value records (NN,
ASN, ATN records) is preserved in the file. For variables that have an NN,
ASN, ATN triple, these records must be together in the block structure
definition (i.e., there can be no BB nor BE records between them). Block
definitions may be nested.

Variable Names (NN)

These NN records declare variable names, type names and line numbers.
The IEEE-695 Trial Use standard has been extended to allow duplicate
local symbolsto be defined, aslong as the indices and the scoping are
different.

This provides symbol definitions that are local to a specific section.

{$FO}{n}{1d}

$FO Record type

n Name index number (must be> 31,0-31 are reserved)
I d Name

Define Types (TY)

TheTY record specifies that a type name represents an explicit type
definition other than the implicit types predefined for use with HP/MRI
language variables. Different types with the same name may be declared.
Thisis supported by this specification by having multiple NN, TY pairs
with the same name in the NN.

{$F2}{nl }{$CE}{n2}[n3][n4]...
$F2 Record type

nl Type index unique within module (>255) (0-255
reserved for implicit types)

$CE Record type

D-25

i960® Processor Software Utilities User's Guide

D-26

n2

n3, n4. ..

Local nameindex for symbol defined by NN
record

Variable number of fields specifying additional
type information as defined in Tables D-7 and
D-8.

Attribute Records (ATN)
Each ATN record is associated with an NN record and defines avalid

symbol.
NN record:

ATN record:

ASN record:
$FO

nl

Id

$F1CE

nl

{$FO}{nl }{1d}

{$F1}{SCE} {n1}{n2}{n3} [x1] [x2] [x3] [x4]
[x5] [x6] [Id]

{$E2} { $CE} { n1}{ h2}

NN record type

Symbol name (NN record) type
Symbol name

ATN record type

Symbol name index (this must be the same index
as specified for the NN record)

Symbol type index (O=untyped)

The numbers representing the attributes, the
blocks they can appear in, and their descriptions
areillustrated in Table D-9.

Optional features, described for each attribute.
ASN record type

Symbol name (NN record) index

Symbol value

HP/MRI 1EEE 695 Object File Format

Table D-9

Attribute Numbers, Blocks, and Descriptions

n3 Block

1 4,6

3 3,46
5

8 3

10 4.6

19 10

37, 38, 39,

50, 51, 52,

53, 54, 55

Description

Automatic variable; requires an additional field [x1]
defining the stack offset (in minimum address units) .
There is no ASN record.

Compiler defined static variable. There must be an ASN
or ASI record specifying the address value.

External variable definition. There is no ASN record.

Line number; requires two extra fields giving the line
number and column number. Two optional fields [x3] and
[x4] are reserved and should be omitted. The line and
column number represent the end of a group of one or
more lines in a statement. A column number of 0
represents the end of the line and reflects the fact that
cvt960 cannot get this information from COFF. Line
numbers do not have to be in ascending order, and it is
the consuming tool’s responsibility to handle numbers
that are "out of order." There must be an ASN record
specifying the address.

Compiler global variable. There must be an ASN record
specifying the address value.

Defines a variable name as a locked register; requires an
extra field, [x1], to define the index of the register name.
There is no ASN record.

Static variable generated by assembler; may be global in
scope. There must be an ASN record specifying the
address/value. There is one required field [x1], which
indicates the number of elements of type n2 described by
the symbol, and [x2], which is a local/global indicator.
[x2]=omitted or O indicates local. [x2]=1 indicates global.

See the AD Extension Part section and the
Environmental Part section.

continued [

D-27

i960® Processor Software Utilities User's Guide

D-28

Table D-9

Attribute Numbers, Blocks, and Descriptions (continued)

n3 Block Description

62 4,6 Procedure block misc.; followed by two fields that
describe the most recent procedure block. The first field
Ix1] is the pmisc. type identification number, the second
[x2] is the number of additional ATN 65 or ASN records
associated with this directive. See the Miscellaneous
Records section for the codes associated with this
directive.

63 3,4,6 Variable misc.; followed by two fields that describe a
variable. The first field [x1] is the vmisc. type
identification number, the second [x2] is the number of
additional ATN 65 or ASN records associated with this
directive. See the Miscellaneous Records section for the
codes associated with this directive.

64 3 Module misc.; followed by two fields that describe the
current module block. The first field [x1] is the mmisc.
type identification number, the second [x2] is the number
of additional ATN 65 and ASN records associated with
this directive. See the Miscellaneous Records section for
the codes associated with this directive.

65 3,4,6 Misc. string; requires one field that is a string value for
miscellaneous records 62, 63 and 64.

Value Records (ASN)
The ASN records are used to define values for variables.

{$E2} { $CE} { nl }{ n2}
$E2CE Record type

nl Symbol name index (must be the same as specified for the
record)
n2 value for symbol (in minimum address unitsif it is an address)

Stack relative symbols and register-based symbols must not have an ASN
record since the value is defined at execution time.

HP/MRI 1EEE 695 Object File Format

Compiler Id

This section is applicable if the assembler recognizes theic960 compiler’s
.i dent directive. Compiler Id Codes directly follow the BB3 record. A
dummy NN record precedes the initial ATN record in order to produce a
symbol nameindex. One ATN record defines that thisis amodule
miscellaneous directive. It isfollowed by three ASN records for tool code,
type checking code, and default pointer size in minimum address units.
These are optionally followed by one ATN for the version number and up
to six ASNs for the date and time.

{$F1} {$CE} {n1} {0} {64} {50} { n5}{ ASN1} { 0} { 4} [ATN1] [ASNA[ASN5[
ASNG[ASN7[ASNS[ASN9] 11111

$F1CE ATN Record type

ni Symbol name index produced by an NN record.

0 Symbol type index

64 Attribute definition of 64 for module misc.

50 Module misc. type identification number of 50 (ATN record)

n5 Miscellaneous record count (based on number of date values,
€tc.)

ASNL Tool code definition. Thetool codeis either 208 for the ic960
compiler or 210 for the cvt960 converter.

ASN2 Type code

0 Transparent type checking (structural type equivalence)

4 Default pointer size for module (in minimum address units).

ATNL Version number of tool

ASN4 Y ear (e.g. 1990)

ASN5 Month (1-12)

ASN6 Day (1-31)

ASN7 Hour (0-23)

ASNS Minute (0-59)

ASN9 Second (0-59)

D-29

i960® Processor Software Utilities User's Guide

D-30

Block End (BE)

The BE record extends the IEEE standard and is used in conjunction with a
BB record. The BE record for type 4,6, and 11 BB records are different
than others as indicated in the following definitions:

Block End - Generd

{ $F9}

$F9 Record type

Block End - for block types 4 and 6

{$F9}{n1}
$F9 Record type
nl Expression defining the ending address of the function (in

minimum address units)
Block End - for block type 11

{$F9} {n1}
$F9 Record type
nl Expression defining the size in minimum address units of the

modul e section

Data Part

The data part contains records defining fixed datafor the module and is
aways loaded at the current PC value in the current section. The current
section is defined by the SB record and the PC is defined by the ASP
record. If no SB record is defined, the current section is specified as 0. If
no ASP record is defined, the PC for asectionisinitialy set to the start of
the section.

HP/MRI 1EEE 695 Object File Format

D

NOTE. Section 10.1 of the |EEE Trial Use Standard says that the current
section is 0 before any SB records are encountered. Section 10.2 specifies
that if no ST record is present for a section, the type is absolute and shall
have an assignment to its L variable. Taken together, these statements
imply that the example module in Section 4.1 of the standard isillegal. HP
and MRI follow the definition as stated in Section 10.1 of the IEEE Trial
Use Standard.

Set Current Section (SB)

The SB record defines the current section. SB has no effect on the P
variable.

{$E5}{n1}
$E5 Record type
ni Section index

Set Current PC (ASP)

The ASP record sets a new value for the current PC. An ASPrecord is
required after an SB record to reset the value of the P variable.

{$E2} {$D0} { n1} {n2}

$E2D0 Record type

nl Section index

n2 Expression defining new value (in minimum address units)

Load Constant Bytes (LD)

The LD record specifies the number of minimum address units to be
loaded as constant data.

{$ED}H{n1}{...}
$ED Record type

ni Number of minimum address units (1-127)
... (n1 x minimum address unit size) data bytes

D-31

i960® Processor Software Utilities User's Guide

D-32

Repeat Data (RE)
The RE record specifies datainitialization in a compact form.

{$F7}{nl}
$F7 Record type
nl Expression defining number of times to repeat the following LD

or LR record data. The |EEE-695 standard has been extended to
include repeating LD records. The length of data that can be
repeated is limited to 128 bytes.

Trailer Part

The Trailer part contains the records described below.

Starting Address (ASG)

The ASG record is optional and defines the execution starting address.
This expression requires $BE/$BF delimiters.

{ $BE} { n1} { $BF}

$E2C7 Record type

ni Vaue defining the execution starting address (in minimum
address units)

Module End (ME)

The ME record defines the end of the module and must be the last record
in the module.

{ ME}

HP/MPI IEEE-695 Format Object File Semantics

This section describes the HP/MRI |EEE-695 format object file semantics.
The format shows the records by record header (for example, NN is aname
index record). Records enclosed in square brackets ("[" and "] ") are
optional; records enclosed in curly braces ("{" and "} ") are repeatable O or
more times.

HP/MRI 1EEE 695 Object File Format

AD Extension Part and Environment Part

The AD Extension part and the Environment part constitute attribute
records describing thefile, its contents, and its creation. The format of the
two sections is shown below:

{[NN] ATN[ASN] }

where at least one NN must be present before any ATN, and the name
index for the ATN must be the same asthe last NN.

Public/External Part

The Public/External part contains records describing public and external
symbols, by name, type, and address. The format of the records is shown
below:

Public: {NI [ATI ASI]}

where the name index for the NI, ATI and AS| records must match in each
triplet. It isnot possible to have more than one ATI or ASI record for any
name. A vmisc may follow any public.

Section Part

The Section part describes the different sectionsin thefile. It describes the
combined sections after linkage.

The format of these records is shown below:

{ST [ASS][ASL]}

where the section index for the ST, ASS, or ASL records must match for

each group. Itisnot possible to have more than one ASS or ASL record
for any section name.

D-33

i960® Processor Software Utilities User's Guide

Debug Part

In the Debug part, there are two types of main groups. high-level blocks
created by a compiler, and assembly language blocks created by the
assembler. The high level blocks contain all compiler symbol information,
as described In the HP/IMRI |EEE-695 specification. The format for the
Debug part is shown below:

{ ([BB1] BB3 [BB5] [BB10]) or BB1O }

where the first enclosing parenthesis shows a high-level group: The
module names for BB1, BB3, and BB10 must match; the filename in the
BB5 isrelated to the module name. The BB10 block provides backward
compatibility. Thelone BB10 block isthe assembly level group. Itis
created when there is no high-level information.

BB1 Block

A BB1 block contains type information for high-level symbals; it is
described earlier in this document. The block is formatted as shown
below:

{NN{TVY}}

where any number of types with the same nameisalowed. The name
index must match between the TY record and the last NN record.

BB3 Block

A BB3 block contains the symbolic information for all symbols except
typesand lines. It represents one compilation unit (afull compilation
module, with includefiles). It isformatted as shown below:

{[BB4] [BB6] NN ATN ASN| }

where BB4 blocks are global functions and BB6 blocks are static functions
or unnamed blocks. The NN, ATN, ASN pairings are public, static, or
external symbols (locals are in BB4 and BB6 blocks). The name index for
NN, ATN and ASN records must match.

HP/MRI 1EEE 695 Object File Format D

BB4 and BB6 Blocks

BB4 and BB6 are scoping blocks and represent functions (procedures).
They contain al local symbolsto the function. BB6 blocks may nest
inside of BB4 and BB6 blocks. If the BB6 block has anull name, itisa
scoping block only (*{" blocksin C). The BB4 and BB6 blocks are
formatted as shown below:

{[BB6] ([NN] ATN) or (NN ATN[ASN]) }

where at least one NN record must be present for each ATN and ASN
name index used. The optionality of NN records is available only for
special ATN records (register lifetime). A local variable with the same
name as another symbol in an outer block must still have a new NN record.
The NN, ATN, or ASN records that describe a symbol must al reside
within the same BB/BE scope; their affiliation cannot cross BB or BE
boundaries. The optionality of ASN recordsis defined earlier in this
document.

BB5 and BB10 Blocks

A BB5 block carries the source file information, such as the source
filename, include filenames, and lines. It is formatted as shown below:

{ [BB5] [[NN] ATN ASN] } [BB10]

The BB10 block is created by the assembler to hold assembly language
information, such as assembly language source filename, and local section
information (R_L abel sections); it is not intended to have assembler
symbols such as alone BB10 block.

The cvt960-created . gl obal _non_i ni t module, however, has many
assembler-level globalsin B10.

The BB10 block is placed after the BB5 block. The HP/MRI specification
alows other BB5 blocks to be nested inside, interspersed in the line
information. These are usualy i ncl ude files. The cvt960 converter does
not produce nested BB5s because i ncl ude file information is not available
from COFF.

D-35

i960® Processor Software Utilities User's Guide

D-36

The line information must have at least one NN record before any ATN or
ASN records, and the index for the ATN and ASN must be the same as the
last NN. Only lines that have code associated with them need to be
present. All readers can assume that any missing lines are associated with
the next line specified.

The column offset parameter indicates the position of the high level source
line. The offset istaken to mean the column position of the last token of
the source text associated with the machine instructions immediately
following the code position indicated by ATN 7.

Source file columns are numbered starting with 1. The specia column
offset value of 0 is defined to indicate the position of the last column on the
line. Because column information is not available from COFF, the column
isO.

The BB10 block carries the information derived by the assembler from a
file not produced by a compiler (or one that did not put in debug
information). The BB10 block has the section information on amodule
basis (as opposed to the linker's combined sections); this allows atool to
know the part of a section that came from a particular module. Also, any
local or global assembly language symbols are shown here. It isformatted
as shown below:

{BB11 }{[BB10] NN ATN ASN}
where the BB11 block contains the section information as described earlier

in thismanual. BB10 blocks may be nested for i ncl ude files. The name
index for the NN, ATN and ASN records must match.

NOTE. COFF lacks module-membership information for global
uninitialized variables, so cvt960 produces the pseudo-module
. gl obal _non_init for them.

HP/MRI 1EEE 695 Object File Format D

Miscellaneous Records

Miscellaneous records provide a flexible and extensible method for
communicating information generated by a compiler or other language
tranglator directly to a debugger or other consumer tool viathe object file.
Information in miscellaneous records s classified according to a coding
system defined below. The content and meaning of each miscellaneous
information category can be defined to suit a wide range of information
needs, and new miscellaneous information categories can be defined as
needed. Thus, miscellaneous records allow the |EEE-695 object module
format to evolve in an orderly manner as new debugging features and
reguirements emerge.

One of the main advantages of miscellaneous records is that, in general,
they are processed in a generic, content-independent manner by
intermediate language system tools such as assemblers and linkers. That
is, assemblers and linkers need not interpret or manipulate in any specia
way the contents of miscellaneous records, except to resolve, in the
standard manner, the values of relocatable expressions that may be present
in these records. Asaresult, there is no need to modify assemblers or
linkers when new classes of miscellaneous information are defined.

Three classes of miscellaneous records have been defined: module
miscellaneous records for augmenting the debugging information for
program modules, procedure miscellaneous records for decorating code
blocks, and variable miscellaneous records for decorating data objects.

The three kinds of miscellaneous records differ primarily with regard to the
scope within which the record’s information applies. The affiliation of a
miscellaneous record with the object or objects it describes is determined
primarily by the relative position within the object file of the miscellaneous
record and the object or objectsit describes. These positional relationships
are explained in more detail below.

D-37

i960® Processor Software Utilities User's Guide

D-38

Module Miscellaneous Records

M odule miscellaneous records convey information about a program
module. For high level modules, module miscellaneous records appear
within a BB3/BE3 scope. For assembly modules, module miscellaneous
records appear within aBB10/BE10 scope. Theinformation in a module
miscellaneous record applies to the module within whose scope the record
isenclosed. For example, the information in the module miscellaneous
record having code 50 (compiler 1d, type checking rules, and compilation
time) appliesto the entire module and all objects in the module.

Muultiple miscellaneous records can coexist within the same module scope,
especialy if the records have different classification codes. However,
some maodule miscellaneous record types (e.g., code 50) allow at most one
record of agiven classification code within any single program module
scope.

Specific object file readers may impose further restrictions on the position
of module miscellaneous records. For example, if the informationin a
module miscellaneous record influences the interpretation of the debugging
information of other objectsin the module scope, specific consuming tools
may require that the module miscellaneous record occur before any other
debug information. Thisis strictly arequirement of the consuming reader
tool, however, and not the object module format.

Variable Miscellaneous Records

The information in a variable miscellaneous record applies to the most
recent data object declared using anormal NN/ATN/ASN cluster, as
described in Chapter 3. For example, variable miscellaneous code defines
the register shadowing parameters for the specific data object immediately
preceding the variable miscellaneous record.

HP/MRI 1EEE 695 Object File Format

Procedure Miscellaneous Records

The information in a procedure miscellaneous record appliesto the entire
code block within whose scope the record is enclosed. The traditional
scope for a procedure miscellaneous record has been a procedure or
function code block, that is, BB4/BE4 or BB6/BE6. For example,
procedure miscellaneous code 1 conveys the address of the exit (return)
instruction of a procedure.

However, in anticipation of supporting future lexical features such as Ada
tasks and package scopes, and to limit the proliferation of terminology
associated with decoration of code blocks, the definition of the enclosing
scope for a procedure miscellaneous record is broadened to include other
kinds of code blocks, some of which are yet to be defined. Thereisno
ambiguity regarding the scope of each procedure miscellaneous record,
because the relevant enclosing scope had to have been agreed to both by
the producer and consumer of the procedure miscellaneous information
when the classification number was assigned.

Thus, by definition, each procedure miscellaneous record’s classification
number also implies the record’s relevant code block scope.

General Syntax Rules

Miscellaneous records are composed of groups of NN, ASN, and ATN
records that together form a cluster or packet of information The
miscellaneous record cluster can be thought of as alist of parameters, the
first of which constitutes a classification number that dishes each cluster
from all others. Remaining parameters are the information conveyed by
the record cluster.

Parameters In Miscellaneous Records

Parameters in miscellaneous records may be character strings, numerical
constants, compiler labels, or relocatable expressions. The object module
format constrains neither the number of parameters a miscellaneous record
may have, nor which of the permissible parameter typesisto be used in
any of the individual parameter slots, except thefirst slot. The first slot

D-39

i960® Processor Software Utilities User's Guide

D-40

must be the numerical information classification code. The number and
composition of the remaining parameter slotsis completely determined by
the syntax specification for each miscellaneous record. However, the
following rules apply to individual parameter values:

1. Numerica constants may be signed and have absolute values between
Oand 231 -1.
2. Floating point constants must be represented as quoted strings.

Every parameter that is a number or relocatable expression is represented
in the miscellaneous record cluster by an individual ASN record and every
parameter that isastring is represented by an individual ATN.

Examples

The following example illustrates how a module miscellaneous record
having the classification code 99 (chosen for illustration) would be
documented in this specification, and how it would be encoded in the
|EEE-695 object module.

code 99, valuel, value2, ‘stringl’, value3, ‘string2

The miscellaneous record cluster would be represented in this document as
follows:

NN: {$F0}{i ndex}{nul | _nane}

ATN: {$F1}{$CE} {i ndex}{$00} { $40} { $63} {5}
ASN: {$E2}{$CE}{i ndex}{val uel}

ASN: {$E2}{$CE}{i ndex}{val ue2}

ATN: {$F1}{$CE}{i ndex}{$00}{$41}{stringl}
ASN: {$E2}{$CE}{i ndex}{val ue3}

ATN: {$F1}{$CE}{i ndex) {$00}{$41}{stri ng2}

HP/MRI 1EEE 695 Object File Format D

The parameters of the NN and first few ATN and ASN records have the
following meanings:

NN: {$F0}{i ndex} {nul | - nane}
i ndex unigue index within the current BB3 block
nul | - name $00 (i.e., null name string)

ATN: {$F1}{$CE}{i ndex}{n2}{n3}{n4}{n5}
i ndex uniqueindex within the current BB3 block (the ATN index must
match the index of the most recent NN record)

n2 $00 symbol type undefined

n3 $40 ATN type 64 - module miscellaneous information (mmisc)
record

n4 $63 = module miscellaneous information code 99 ($63 hex =99
decimal)

n5 $05 = number of additional ASN/ATN records (5) associated

with this mmisc cluster

ASN: {$E2}{$CE}{i ndex}{n2}
i ndex asabove
n2 expression for valuel (etc.)

A specid case is where the first parameter in the miscellaneous record
cluster (after the classification code) isastring. In this case, the initial
string is encoded in the first ATN of the miscellaneous record cluster right
after the parameter indicating the number of additional ATN/ASN records
in the cluster. A procedure miscellaneous record cluster matching this
description, with illustrative classification code 99, isillustrated bel ow.

code 99, ’'stringl, valuel

The miscellaneous record would be represented in this specification as
follows:

NN: {$F0} (i ndex}{nul | _nane}
ATN: {$F1}{$CE}{i ndex}{$00}{ $3E} { $63}{ 1} { st ri ng1}
ASN: {$E2}{$CE}{i ndex}{val uel}

D-41

i960® Processor Software Utilities User's Guide

D-42

NOTE. string2isincluded inthefirst ATN record of the cluster.

Optional Parameter Fields

Some miscellaneous records have optional parameters. These are denoted
in the parameter list as[par anet er] . |f some optional parametersin a
record are present but others are not, all of the optional parameter slots
preceding a supplied optional parameter must be accounted for. Missing
optional parameter(s) whose values are numbers are indicated using the
IEEE-695 "unknown" code ($80) in the slot corresponding to the missing
parameter. If the missing optional parameter is astring, a$80 length string
would appear in the ATN record corresponding to the missing string.
Omitted optional parameters that follow the last supplied parameter need
not be explicitly included in the miscellaneous record.

For example, in the following variable miscellaneous record, optional
val ue2 ismissing:

code 99, valuel [,value2] [, value3]

The miscellaneous record cluster would be represented in this document as
follows:

NN: {$F0} {i ndex} {nul | _nane}

ATN: {$F1}{$CE}{i ndex}{$00}{$3F}{$63}{5}
ASN: {$E2}{$CE}{i ndexXval uel}

ASN: {$E2}{ $CE}{i ndex}{$80}

ASN: {$E2){$CE}{i ndex}{val ue3}

HP/MRI 1EEE 695 Object File Format

As another special casg, it is permissible to omit the NN record when a
variable miscellaneous directive immediately follows the variable
NN/ATN/ASN that it modifies. In this case, the variable miscellaneous
directive ATNs and ASNswould all use the same NN index as the actual
variable:

NN i ndex
ATN i ndex info... Original Variable
ASN i ndex expression

ATN i ndex 0 64 m sc_code count
Variable Misc. Information
ASN ATN i ndex. . .

Codes for Miscellaneous Records

Each module, procedure, and variable miscellaneous directive is assigned
an |D number from a common index pool. For example, there is only one
miscellaneous directive with 1D code 1.

The first 50 codes (0-49) are reserved for miscellaneous directivesin which
the assembler needs to correlate the argument information with other

debug information. Codes greater than 49 are used for miscellaneous
directives where the assembler only needs to encode the parameters of the
miscellaneous directive into the relocatable object module.

Policies for Adding and Modifying Miscellaneous
Records

Adding new miscellaneous records to the object module format is
straightforward, but requires agreement between the producers and
consumers of the miscellaneous information. To supplement the
debugging information for some program object, the compiler designer
need only agree with the consumer tool designer on the miscellaneous
record classification code to identify the new information category, and
output the appropriate miscellaneous record and parameters using the
general rules described below.

D-43

i960® Processor Software Utilities User's Guide

D-44

Clearly, even when there is agreement between producers and consumers
of IEEE-695 object modules, wholesale modification of existing
miscellaneous records is undesirabl e, because older versions of object
module reader tools can become confused by the new record syntax, and
the backward compatibility of new object files with older consumer tools
could suffer.

Policies for Generating and Reading Miscellaneous
Records

The following policies are set forth to ensure that miscellaneous
information records are created, modified, and consumed in an orderly
manner:

1. (For object module producers) Adding new required fieldsto an
existing miscellaneous record is prohibited. Adding new optional
fields to an existing miscellaneous record is permissible only if (a) the
new information is related to the information already in the record, and
(b) the new information does not ater in any way the interpretation of
the information already in the record. If the new information violates
any of these conditions, the new information should go into a new
miscellaneous record classification.

2. (For object module consumers) When a miscellaneous record having
an unknown classification is encountered, the object file reader should
first consult the version number of the object module format in the
ATN code 37 record of the Environment Part (see Chapter 3). If the
object module version is newer than the reader was designed to
consume, the reader should provide an indication to the user to this
effect. Readers might then either (@) continue reading the object file,
simply ignoring the information, or (b) abort reading the object file
with amessage that continuing would result in potentially ignoring
important information about symbolsin the object module. If behavior
(b) isimplemented, the reader might be designed so that the user can
force it to read the object file anyway, thereby allowing the user to get
some benefit from the object file, while being fully aware of the
consequences of ignoring some information.

HP/MRI 1EEE 695 Object File Format

D

When a miscellaneous record having an unexpected optional
parameter is encountered, the situation is somewhat different.
Assuming the unexpected optiona parameters conform to the
producer rules above, that is, they do not ater the interpretation of the
information aready in the record, they are truly discretionary, and the
reader probably can safely proceed with reading the object module,
perhaps after printing awarning (after checking the object module
version number) to the effect that unexpected fields were encountered
while reading a miscellaneous record.

Lastly, if the version number of the object file is one the reader was
designed to consume, and either new miscellaneous codes or
unexpected fields are encountered, the object module is either
defective or aproducer has broken the rules for that object module
version. In either case, the reader should treat the remainder of the
object file with the same (or perhaps greater) suspicion than when the
object module version is newer than that supported by the reader.

The behavior in the face of al these contingenciesis, of course, left to the
implementor of the consumer tool.

The currently defined miscellaneous information records are documented
in Table D-10.

D-45

i960® Processor Software Utilities User's Guide

D-46

Table D-10

Miscellaneous Record Codes

Misc.
Type Code Meaning
module 50 Compiler Id and date stamp.

Syntax: code 50, tool_code, type_rule, pointer_size
[,'’compiler_version_string’] [,date]

NN:

ATN:

ASN:
ASN:
ASN:
ATN:

ASN:
ASN:
ASN:
ASN:
ASN:
ASN:

{$FOHindex}{null_name}
{$F1IH{SCEHindexH{$00H$40H$32}{#_of ATN/ASNs
- currently between 3 and 10 inclusive}
{$E2H{$CE}XindexKtool_code}
{$E2H{$CE}XindexKtype_rule}
{$E2}{$CE}{indexHpointer_size}
{$SF1H{$CEHindex}{$00}{$41}
{compiler_version_string}
{$E2H{SCE}XindexHyear}
{$E2H{$CE}index{month}
{SE2H{$CE}{index}{day}
{$E2H{$CE}XindexKhour}
{$E2H{$CE}{index{minute}
{$E2H{$CE}Xindex}second}

continued [

HP/MRI 1EEE 695 Object File Format

Table D-10 Miscellaneous Record Codes (continued)

Misc.

Type Code Meaning

variable 63 Call optimization information (i960-)
procedure Purpose/meaning:

Holds the .sysproc/.leafproc information for the most
recent public or external.

Position:
In the Public/External Part after NI/ATI/ASI triples or
after NX records in relocatable files.
Syntax: Code 63, proc_type, system_index | bal_address
NN: {$FOHindex}{null_name}
ATN: {$F1HSCEXindexH{$00}{$3F}{$3F}
{#_of ATN/ASN'’s (1 or 2)}
ASN: {$E2H{$CE}Xindex}{proc_type}
ASN: {$E2}{$CEXindex}{bal_address}
Parameter meanings:
proc_type: 0 if unknown
1 if leaf procedure
2 if system table procedure
system_index: index into the system_table
(used only if proc_type == 2)
bal_address: branch and link address (used only if
proc_type == 1)

For more information on compiler identification, seethe. i dent directive
in the i960® Processor Assembler User's Guide

D-47

| ndex

A

a (After) archiver option modifier, 2-7
A (architecture) linker option, 7-25
arc960 command, 2-1
archiver, 2-1
a (After) option modifier, 2-7
b (Before) option modifier, 2-8
¢ (create) option modifier, 2-9
d (Delete) option modifier, 2-10
F (Library Format) option modifier, 2-11
h (Help) option modifier, 2-11
i (Insert) option modifier, 2-8
| (Local) option modifier, 2-12
m (Move) option modifier, 2-13
0 (Output Date) option modifier, 2-14
options summary, 2-2
p (Print) option modifier, 2-14
r (Replace) option modifier, 2-15
s (Symbol Table) option modifier, 2-16
t (Table of Contents) option modifier, 2-17
u (Update) option modifier, 2-18
v (Verbose) option modifier, 2-19
V (Version) option modifier, 2-20
V960 (Version) option modifier, 2-20
x (Extract) option modifier, 2-21

Z (Suppress Time Stamp) option modifier,
2-22

B

b (Before) archiver option modifier, 2-8

B (section start address) linker option, 7-27
b.out / COFF / ELF converter, 3-1

options summary, 3-2
backdlash (\) character, use with tools, 1-5
BSS sections, linker, 7-4

C

c (circular library search) linker option, 7-29

¢ (Create) archiver option modifier, 2-9
C (startup alternative) linker option, 7-29
CAFF format for i960® processors, C-1
callj/calljx, link time optimization, 7-16
checksum rom960 directive, 12-7
cof960 command, 3-2
object converter, 3-1
COFF / b.out / ELF converter, 3-1
options summary, 3-2
COFF format for i960® processors, C-1
COFF symbol translation, cvt960, 4-5
COFF to IEEE-695 converter, 4-1
options summary, 4-2
Common Object File Library (COFL), B-1
compatibility of mpp960, 8-1
conversion tools for object files, 3-1, 12-1
converter, 3-2

Index-1

i960® Processor Software Utilities User's Guide

Index-2

output file, 3-3

coverage analyzer, 5-1
controls summary, 5-2, 5-3
option summary, 5-3, 5-4

CTOOLS 5.1 compatibility, 1-3

cvt960 invocation, 4-1

cvt960 object converter, 4-1
archives and relocatable objects, 4-3
COFF line numbers, 4-4
compilation/assembly information, 4-4
global uninitialized symbols, 4-3
|EEE-695 built-in types, 4-5
|EEE-695 converter warning messages, 4-8

Position-independent code, data, and
symbols, 4-3

unreferenced types, 4-3

D

d (define common symbol space) linker option,

7-31
d (Delete) archiver option, 2-10

D (inhibit CAVE section compression) linker
option, 7-31

debugging macros, 8-16—-8-19
defsym (define a symbol) linker option, 7-32
Displaying archive structure, 6-12
dmp960
archive support, 6-11
displaying archive structure, 6-12
dumping absolute symbols, 6-5
dumping archive member contents, 6-14
examples, 6-6
section headers, 6-11

symbol tables, 6-9

with symbolic disassembly, 6-8
dmp960 / gdmp960

options summary, 6-2 thru 6-4
dmp960 invocation, 6-1
dumper

archive support, 6-11

displaying archive structure, 6-12

options summary, 6-2, 6-3
dumper / disassembler, 6-1
dumping absolute symbols, 6-5
dumping archive member contents, 6-14

E

e (entry point) linker option, 7-33

ELF / b.out / COFF converter, 3-1
options summary, 3-2

ELF/DWARF sections, linker, 7-4

environment variables, linker, 7-20

F

f (fill) linker option, 7-35

F (format) linker option, 7-34
F (Library Format) archiver option, 2-11

G

G (big-endian target) linker option, 7-36

gar960 command, 2-1

gcdm (decision maker) linker option, 7-37
gcov960 invocation, 5-1

gdmp960

Index

archive support, 6-11
displaying archive structure, 6-12
dumping absolute symbals, 6-5
dumping archive member contents, 6-14
invocation, 6-1
ghist960
overview, 14-1
invocation, 14-12
gld960 linker invocation, 7-6
global uninitialized symbol, |EEE-695, 4-3
gmung960 command, 9-1
gnm960 command, 10-1
grom960, 11-1
converting image to hex files, 11-4
creating binary images, 11-4
invocation, 11-1
options summary, 11-2
section specification, 11-2
gsize960 command, 13-1
gstrip960 command, 15-1

H

h (Help) archiver option, 2-11

h (help) linker option, 7-38

H (sort common symbols) linker option, 7-38
HP/MRI |EEE 695 object file format, D-1
hyphen (-) character, use with toals, 1-5

1-J

i (Insert) archiver option modifier, 2-8
| EEE-695
built-in types, cvt960, 4-5

converter warning messages, cvt960, 4-8
object file format, D-1

ihex rom960 directive, 12-8

invocation, conventions, 1-4

J (compress) linker option, 7-39

L

| (library input) linker option, 7-40

L (library search path) linker option, 7-39
| (Local) archiver option modifier, 2-12
library naming conventions and search order
linker, 7-21
linker, 7-1-7-57
B (section start address) option, 7-27

binding profile counters to non-standard
sections, 7-19

¢ (circular library search) option, 7-29
C (startup alternative) option, 7-29
calljx, i960® RP processor, 7-19

d (define common symbol space) option, 7-
31

D (inhibit CAVE section compression)
option, 7-31

default allocation, A-7

defsym (define a symbol) option, 7-32

directives, A-4

e (entry point) option, 7-33

ELF/DWARF sections, 7-4

environment variables, 7-20

f (fill) option, 7-35

F (format) option, 7-34

G (big-endian target) option, 7-36
linker (continued)

Index-3

i960® Processor Software Utilities User's Guide

gcdm (decision maker) option, 7-37

h (help) option, 7-38

H (sort common symbols) option, 7-38
incrementd linking, 7-13

J (compress) option, 7-39

| (library input) option, 7-40

L (library search path) option, 7-39

library naming conventions and search
order, 7-21

link time optimization, 7-16
linker directivefiles, specifying, 7-12
m (memory map) option, 7-42

M (multiple definition warning) option,
7-42

memory block and section alocation, 7-2
N (name memory map file) option, 7-43
n (noinhibit output) option, 7-44

named BSS sections, 7-4

O (optimization of callsinhibited) option, 7-
44

o (output filename) option, 7-45

Object Module Format (OMF)
compatibilities, 7-14

options reference, 7-24

output file, naming, 7-13

p (position-independence) option, 7-47

P (profiling) option, 7-46

R (read symbols only) option, 7-48

r (relocation) option, 7-49

S (strip) option, 7-50

T (section start address) option, 7-27

t (suppress multiple definition symbol
warnings) option, 7-52

T (target) option, 7-51

u (unresolved symbol) option, 7-53
v (verbose) option, 7-54
V (version) option, 7-54
v960 (version) option, 7-54
W (warnings) option, 7-55
X (compress) option, 7-55
y (trace symbol) option, 7-56
Z (program database) option, 7-57
Z (time stamp suppression) option, 7-57
linker command language, 7-51
assignments, A-2
expressions and operators, A-2
introduction, A-1
linker directive files, A-35
command language, A-1
described, 7-4
sample, 7-5
specifying, 7-12
linker directives
ADDR, A-25
ALIGN, A-25
CHECKSUM, A-33
DEFINED, A-25
ENTRY, A-28
FLOAT, A-31

FORCE_COMMON_ALLOCATION,
A-25

HLL, A-29
INCLUDE, A-32
MEMORY, A-5

linker directives (continued)
NEXT, A-25
OUTPUT, A-34

Index

PRE_HLL, A-28
SEARCH_DIR, A-32
SECTIONS, A-8
SIZEOF, A-27
STARTUP, A-27
SYSLIB, A-31
TARGET, A-33

linker options summary, 7-7

linking, incremental, 7-13

Ink960 linker invocation, 7-6

M

m (memory map) linker option, 7-42
m (Move) archiver option, 2-13
M (multiple definition warning) linker option,
7-42
macro processor, 8-1
controlling input, 8-19
debugging macros, 8-16
diverting output, 8-23
including files, 8-22
processor options, 8-2
map rom960 directive, 12-10
mkfill, 12-12
mkimage rom960 directive, 12-12
move rom960 directive, 12-14
mpp960
command, 8-2
message prefixes, 8-1

munger, 9-1
options summary, 9-2

N

N (name memory map file) linker option, 7-43

n (noinhibit output) linker option, 7-44
nam960 command, 10-1
name lister, 10-1
options summary, 10-3
namer tool, 10-1
names of utilities, 1-3

O

O (optimization of callsinhibited) linker option,

7-44
0 (Output date) archiver option modifier, 2-14
o (output filename) linker option, 7-45
objcopy

command, 3-2

object converter, 3-1

options summary, 3-2
object file conversion toals, 3-1, 12-1
Object Module Format (OMF)

archives, 2-4

compatibilities, 7-14
optimization, link time, 7-16
output files, linker

naming, 7-13

Index-5

i960® Processor Software Utilities User's Guide

P S (strip) linker option, 7-50
s (Symbol Table) archiver option modifier, 2-16
section size printer, 13-1

options summary, 13-2

p (position-independence) linker option, 7-47
p (Print) archiver option, 2-14
P (profiling) linker option, 7-46

packhex rom960 directive, 12-15 sh rom960 directive, 12-21
patch rom960 directive, 12-16 §iz960 command, 13-1
permute rom960 directive, 12-17 slash (/) character, use with tools, 1-5

split rom960 directive, 12-22
statistical profiler, 14-1

profile (p) option, gcov960, 5-3, 5-4

buckets, 14-3

L str960 command, 15-1
R (read symbols only) linker option, 7-48 stripper, 15-1
r (relocation) linker option, 7-49 options summary, 15-2
r (Replace) archiver option, 2-15
rom rom960 directive, 12-18 T
rom960 _

checksum directive, 12-7 T (section start address) linker option, 7-27

t (suppress multiple definition symbol warnings)
linker option, 7-52

t (Table of contents) archiver option, 2-17
T (target) linker option, 7-51
temporary files, archiver, 2-5
test coverage anaysistool, 5-1
controls summary, 5-2, 5-3
option summary, 5-3, 5-4
tool names, 1-3
toals, list of, 1-2

directives summary, 12-4
ihex directive, 12-8
invocation, 12-1, 12-3
map directive, 12-10
mkfill directive, 12-12
mkimage directive, 12-12
move directive, 12-14
packhex directive, 12-15
patch directive, 12-16
permute directive, 12-17
rom directive, 12-18
shdirective, 12-21
split directive, 12-22
rommer, rom960, 12-1

Index-6

Index

u

u (unresolved symbol) linker option, 7-53

u (Update) archiver option and modifier, 2-18
UNIX command line, 1-4

utilities, list of, 1-2

utility names, 1-3

\Y

v (Verbose) archiver option modifier, 2-19
v (verbose) linker option, 7-54

V (Version) archiver option, 2-20

V (version) linker option, 7-54

vI60 (Version) archiver option, 2-20

v960 (version) linker option, 7-54

W-X

W (warnings) linker option, 7-55
Windows command line, 1-4

X (compress) linker option, 7-55
x (Extract) archiver option, 2-21

Y-Z
y (trace symbol) linker option, 7-56

Z

Z (program database) linker option, 7-57

Z (Suppress time stamp) archiver option, 2-22
Z (time stamp suppression) linker option, 7-57

Index-7

