

STRUCTURE OF A NAMED VOLUME

TOTAL$BLKS

POINTR(40)

THIS$SIZE

RESERVED$A

CHK$SUM

A-14

Total number of volume blocks used by this file, including indirect
block overhead. A volume block is a block of data whose size is the
same as the volume granularity. All memory in the volume is
divided into volume blocks, which are numbered sequentially,
starting with the block containing the smallest addresses (block 0).
Indirect blocks are discussed later in this section.

A group of BYTES on which the following structure is imposed:

PTR(8) STRUCTURE (
NUM$BLOCKS WORD,
BLK$PTR(3) BYTE);

This structure identifies the data blocks of the file. These data
blocks may be scattered throughout the volume, but together they
make up a complete file. If the file is a short file (bit 1 of the
FLAGS field is set to zero), each PTR structure identifies an actual
data block. In this case, the fields of the PTR structure contain the
following:

NUM$BLOCKS

BLK$PTR(3)

Number of volume blocks in the data block.

A 24-bit value specifying the number of the
first volume block in the data block. Volume
blocks are numbered sequentially, starting
with the block with the smallest address
(block 0). The bytes in the BLK$PTR array
range from least significant (BLK$PTR(O))
to most significant (BLK$PTR(2)).

If the file is a long file (bit 1 of the FLAGS field is set to one), each
PTR structure identifies an indirect block (possibly consisting of
more than one contiguous volume block), which in turn identifies
the data blocks of the file. In this case, the fields of the PTR
structure contain the following:

NUM$BLOCKS Number of volume blocks pointed to by the
indirect block.

BLK$PTR(3) A 24-bit volume block number of the indirect
block.

Indirect blocks are discussed later in this section.

Size, in BYTES, of the total data space allocated to the file. This
figure does not include space used for indirect blocks, but it does
include any data space allocated to the file, regardless of whether
the file fills that allocated space.

Reserved field, set to zero.

Contains a checksum value for the fnode.

Disk 'Verification

ID$COUNT

ACC(9)

PARENT

AUX(*)

STRUCTURE OF A NAMED VOLUME

Number of access-ID pairs declared in the ACC(9) field.

A group of BYTES on which the following structure is imposed:

ACCESSOR(3) STRUCTURE (
ACCESS
ID

BYTE,
WORD) ;

This structure contains the access-ID pairs that define the access
rights for the users of the file. By convention, when a file is created,
the owner's ID is inserted in ACCESSOR(O), along with the code
for the access rights. The fields of the ACCESSO R structure
contain the following: .

ACCESS

ID .

Encoded access rights for the file. The
settings of the individual bits in this field
grant (if set to one) or deny (if set to zero)
permission for the corresponding operation.
Bit 0 is the rightmost bit.

Data File Directory
Bit Operation Operation

o delete delete
1 read list
2 append add entry
3 update change entry
4-7 reserved (must be 0)

ID of the user who gains the corresponding
access permission.

Fnode number of directory file that lists this file. For files initially
present on the volume, this parameter is important only for the root
directory. For the root directory, this parameter should specify the
number of the root directory's own fnode. For other files (fnode
file, volume free space map file, free fnodes map file, bad blocks file,
volume label) the I/O System does not examine this field.

AuxHiary BYTES associated with the file. The named file driver
does not interpret this field, but the user can access it by making
GET$EXTENSION$DATA and SET$EXTENSION$DATA system
calls. The size of this field is determined by the size of the fnode,
specified in the iRMX Volume Label. If you use the Human
Interface FORMAT command or create your own utility to format a
volume, you can make this field as large as you wish; however, a
larger AUX field implies slower file access.

Certain fnodes designate special files that appear on the volume. The following sections
discuss these fnodes and the associated files.

Disk Verification A-IS

STRUCTURE OF A NAMED VOLUME

A.4.2 Fnode 0 (Fnode File)

The first fnode structure in the fnode file describes thefnode file itself. This file contains
all the fnode structures for the entire volume. It must reside in contiguous locations in the
volume. The fields of fnode 0 must be set as follows:

• The bits in the FLAGS field are set to the following (bit 0 is the rightmost bit):

Bit Value Description

0 1 Allocated file
1 0 Short file
2 1 Primary fnode
3-4 0 Reserved bits
5 0 Initial status is unmodified
6 0 File will not be deleted
7-15 0 Reserved bits

• The TYPE field is set to Ff$FNODE.

• The GRAN field is set to 1.

• The OWNER field is set to the ID of the user who formatted it.

• The CR$TIME, ACCESS$TIME, and MOD$TIME fields are set to the time the
system was formatted.

• Since the iRMX Volume Label specifies the size of an individual fnode structure and
the number of fnodes in the fnode file, the value specified in the TOTAL$SIZE field of
fnode 0 must equal the product of the values in the FNODE$SIZE and MAX$FNODE
fields of the iRMX Volume Label. .

• The TOTAL$BLOCKS field specifies enough volume blocks to account for the
memory listed in the TOTAL$SIZEJield. The product of the value in the
TOTAL$BLOCKS field and the volume granularity equals the value of the
THIS$SIZE field, since the fnode file is a short file.

• Since the fnode file must reside in contiguous locations in the volume, only one PTR
structure describes the location of the file. The value in the NUM$BLOCKS field of
that PTR structure equals the value in the TOTAL$BLOCKS field. The BLK$PTR
field indicates the number of the first block of the fnode file.

• The ID$COUNT field is set to ~ne ..

A-16 Disk V~rification

STRUCTURE OF A NAMED VOLUME

A.4.3 Fnode 1 (Volume Free Space Map File)

The second fnode, fnode 1, describes the volume free space map file. The TYPE field for
fnode 1 is set to Ff$VOLMAP to designate the file as such.

The volume free space map file keeps track of all the space on the volume. It is a bit map
of the volume, in which each bit represents one volume block (a block of space whose size
is the same as the volume granularity). If a bit in the map is set to one, the corresponding
volume block is free to be allocated to any file. If a bit in the map is set to zero, the
corresponding volume block is already allocated to a file. The bits of the map correspond
to volume blocks such that bit n of byte m represents volume block (8 * m) + n. The bits in
the remaining space allocated to the map file (those that do not correspond to actual
blocks of memory) must be set to zero.

When the volume is formatted, the volume free space map file indicates that the first 3328
bytes of the volume (the label and bootstrap information) plus any files initially placed on
the volume (fnode file, volume free space map file, free fnodes map file, bad blocks file)
are allocated. Space is also reserved for the R?SA VE and R?SECONDSTAGE files if
they are selected during formatting.

A.4.4 Fnode 2 (Free Fnodes Map File)

The third fnode, fnode 2, describes the free fnodes map file. The TYPE field of fnode 2 is
set to Ff$FNODEMAP to designate the file as such.

The free fnodes map file keeps track of all the fnodes in the fnodes file. It is a bit map in
which each bit represents an fnode. If a bit in the map is set to one, the corresponding
fnode is not in use and does not represent an actual file. If a bit in the map is set to zero,
the corresponding fnode already describes an existing file. The bits in the map correspond
to fnodes such that bit n of byte m represents fnode number (8 * m) + n. The bits in the
remaining space allocated to the map file (those that do not correspond to actual fnode
structures) must be set to zero.

When the volume is formatted, the free fnodes map file indicates that fnodes 0, 1, 2, 3, 4, 5,
and 6 are in use. If either the RESERVE option or the MSABOOT option (iRMX II only)
are selected when the volume is formatted, the map file also indicates fnode 7 is in use. If
both options are selected, fnode 8 is also used. If other files are initially placed on the
volume, the free fnodes map file must be set to indicate this as well.

A.4.S Fnode 3 (Accounting File)

When a volume is formatted, fnode 3 is set up representing a file of type Ff$ACCOUNT.
The fnode is set up as allocated, and of the indicated type, but it does not assign any actual
space for the file.

Disk Verification A-17

STRUCTURE OF A NAMED VOLUME

A.4.6 Fnode 4 (Bad Blocks Map File)

The fifth fnode, fnode 4, contains a map of all the bad blocks on the volume. The TYPE
field of fnode 4 is set to Ff$BADBLOCK to indicate this.

The bad block map file keeps track of all the bad blocks on the volume. It is a bit map of
the volume, in which each bit represents one volume block (a block of space whose size is
the same as the volume granularity). If a bit in the map is set to zero, the corresponding
volume block has no bad blocks and may be allocated to any file. If a bit in the map is set
to one, the corresponding volume block is bad. If a block is marked "bad," it must also be
marked allocated in the volume free space file. The bits of the map correspond to volume
blocks such that bit n of byte m represents volume block (8 * m) + n.

A.4.7 Fnode 5 (Volume Label File)

This fnode contains the first 3328 bytes of any volume. The information in this file defines
the volume as a whole. The TYPE field of this fnode is set to Ff$VLABEL. You cannot
write to this fnode.

A.4.8 Fnode 6 (Root Directory)

The root directory is a special directory file. It is the root of the named file hierarchy for
the volume. The iRMX Volume Label specifies the fnode number of the root directory.
The root directory is its own parent. That is, the PARENT field of its fnode specifies its
own fnode number.

The root directory (and all directory files) associates file names with fnode numbers. It
consists of a number of entries that have the following structure:

DECLARE
DIR$ENTRY

where:

FNODE

COMPONENT(14)

STRUCTURE (
FNODE
COMPONENT (14)

WORD,
BYTE) ;

Fnode number of a file listed in the directory.

A string of ASCII characters that is the final component of the path
name identifying the file. This string is left justified and null padded
to 14 characters.

When a file is deleted, its fnode number in the directory entry is set to zero.

A-IS Disk Verification

STRUCTURE OF A NAMED VOLUME

A.4.9 Fnodes 7 and 8 (R?SECONDSTAGE and R?SAVE)

These fnodes mayor may not be reserved depending on whether the RESERVE and
MSABOOT (iRMX II only) options are used during formatting. If both options are used,
the R?SECONDSTAGE file is placed in fnode 7 and the R?SAVE file is placed in fnode 8.
If only RESERVE is used, R?SA VE is placed in fnode 7 and fnode 8 remains unallocated.
If only MSABOOT (iRMX II only) is used, R?SECONDSTAGE is placed in fnode 7 and
fnode 8 remains unallocated. If neither option is used, both fnode 7 and fnode 8 remain
unallocated.

A.4.9.1 R?SECONDSTAGE

R?SECONDSTAGE is a file which may be optionally created by the MSABOOT option of
the FORMAT command. R?SECONDSTAGE is the second stage bootloader for systems
that conform to the MULTIBUS II System Architecture (MSA) specification.
R?SECONDSTAGE is created at the end of the volume. However, if the RESERVE
option is also specified, R?SECONDSTAGE will be placed in the volume blocks
immediately preceeding R?SA YE. (The fnode for the R?SECONDSTAGE file is
allocated out of the fnodes reserved through the FILES parameter of the FO RMA T
command.)

A.4.9.2 R?SAVE

R?SA VE is a file which may be optionally created by the RESERVE option of the
FORMAT command. The FORMAT command creates a file named R?SA VE, which
contains the duplicate volume label, in the innermost track of the volume. A copy of the
iRMX volume label is placed at the physical end of the file and an fnode is allocated for
R ?SA VE in the fnode file. (The fnode for the R ?SA VE file is allocated out of the fnodes
reserved through the FILES parameter of the FORMAT command.)

The FORMAT command creates a backup of the fnode file in its initialized state.
R?SA VE is not subsequently updated as files are written to or deleted from the volume.
Therefore, you will have to use the BACKUPFNODES Disk Verification Utility command
or the BACKUP option of the Human Interface SHUTDOWN command to back up the
fnode file at regular intervals.

A.4.10 Other Fnodes

When formatting a volume, no other fnodes in the fnode file represent actual files. The
remaining fnodes must have bit zero (allocation status) set to zero.

Disk Verification A-19

STRUCTURE OF A NAMED VOLUME

A.S LONG AND SHORT FILES

A file on a volume is not necessarily one contiguous string of bytes. In many cases, it
consists of several blocks of data scattered throughout the volume. The fnode for the file
indicates the locations and sizes of these blocks in one of two ways, as short files or as long
files.

A.S.1 Short Files

If the file consists of eight or less distinct blocks of data, its fnode can specify it as a short
file. The fnode for a short file has bit 1 of the FLAGS field set to zero. This indicates to
the I/O System that the PTR structures of the fnode identify the actual data blocks that
make up the file. Figure A-2 illustrates an fnode for a short file. Decimal numbers are
used in the figure for clarity.

A-20 Disk Verification

STRUCTURE OF A NAMED VOLUME

Label and
Bootstrap

Information

. . .

fnode 8

~

TOTAL$SIZE

8000

TOTAL$BLKS

THIS$SIZE

8192

Volume

Data Block

Data Block

Data Block

fnode Rle Volume Granularity = 1024

Figure A-2. Short File Fnode

As you can see in Figure A-2, fnode 8 identifies the short file. The file consists of three
distinct data blocks. Three PTR structures give the locations of the data blocks. The
NUM$BLOCKS field of each PTR structure gives the length of the data block (in volume
blocks), and the BLK$PTR field points to the first volume block of the data block.

W-0994

Disk Verification A-21

STRUCTURE OF A NAMED VOLUME

The other fields shown in Figure A-2 include TOTAL$BLKS, THIS$SIZE, and
TOTAL$SIZE. The TOTAL$BLKS field specifies the number of volume blocks allocated
to the file, which in this case is eight. This equals the sum of NUM$BLOCKS values (3 +
2 + 3), since short files use all allocated space as data space.

The THIS$SIZE field specifies the number of bytes of data space allocated to the file. This
is the sum of the NUM$BLOCKS values (3 + 2 + 3) multiplied by the volume granularity
(1024) and equals 8192.

The TOTAL$SIZE field specifies the number of bytes of data space that the file occupies
(designated in Figure A-2 by the shaded area). As you can see, the file does not occupy all
the space allocated for it, so the TOTAL$SIZE value (8000) is not as large as the
THIS$SIZE value.

A.S.2 Long Files

If the file consists of more than eight distinct blocks of data, its fnode must specify it as a
long file. The fnode for a long file has bit 1 of the FLAGS field set to one. This tells the
I/O System that the PTR structures of the fnode identify indirect blocks. The indirect
blocks identify the actual data blocks that make up the file.

Each indirect block contains a number of indirect pointers, which are structures similar to
the PTR structures. However, an indirect block can contain more than eight structures and
thus can point to more than eight data blocks. In fact, an indirect block can consist of more
than one volume block; however, all volume blocks of an indirect block must be contiguous.
The structure of each indirect pointer is as follows:

DEClARE
IND$PTR STRUCTURE(

NBLOCKS
BLK$PTR

BYTE,
BLOCK$NUM) ;

where:

NBLOCKS

BLK$PTR

Number of volume blocks in the data block.

A 24-bit volume block number of the first volume block in the data
block. Volume blocks are numbered sequentially throughout the
volume, starting with the block with the smallest address (block 0).

The operating system determines how many indirect pointers there are in an indirect block
by comparing the NBLOCKS fields of the indirect pointers with the NUM$BLOCKS field
of the fnode. It assumes that the indirect block contains as many pointers as necessary for
the sum of the NBLOCKS fields to equal the NUM$BLOCKS field.

A-22 Disk Verification

STRUCTURE OF A NAMED VOLUME

Because indirect blocks can span several volume blocks, any utility that uses indirect blocks
must determine if an indirect block consists of more than one volume block. To do this,
the utility should do the following:

1. Read the volume block pointed to by the BLK$PTR field in the fnode's POINTR
structure. BLK$PTR points to the beginning of a volume block containing all or the
first part of an indirect block.

2. If the sum of all NBLOCKS fields in the volume block is less than NUM$BLOCKS,
the indirect block continues into the next contiguous volume block. The utility must
read and process the next volume block.

3. Add the NBLOCKS values in the new volume block to the sum of all previous
NBLOCKS. When the sum of the NBLOCK values equals NUM$BLOCKS you
have reached the end of the indirect block. If necessary, continue reading volume
blocks and summing NBLOCKS values until the sum of the NBLOCKS values equals
NUM$BLOCKS. The utility may have to read several volume blocks before finding
the end of the indirect block.

Figure A-3 illustrates an fnode for a long file. Decimal numbers are used in the figure for
clarity.

Disk Verification A-23

STRUCTURE OF A NAMED VOLUME

Label and
Bootstrap

Information

fnode 9

~

TOTAL$SIZE -----------
• • • 20300

TOTAL$BLKS

THIS$SIZE

20480

fnode Rle

Volume

Figure A-3. Long File Fnode

Volume Granularity = 1024

W-0995

As you can see in Figure A-3, fnode 9 identifies the long file. The actual file consists of
nine distinct data blocks. One PTR structure and an indirect block give the locations of the
data blocks. The NUM$BLOCKS field of the PTR structure contains the number of
volume blocks pointed to by the indirect block. The BLK$PTR field points to the first
volume block of the indirect block.

A-24 Disk Verification

STRUCTURE OF A NAMED VOLUME

In the indirect block, each NBLOCKS field gives the length of an individual data block, and
each BLK$PTR field points to the first volume block of a data block.

Figure A-3 also lists the TOTAL$BLKS, THIS$SIZE, and TOTAL$SIZE values, which are
more complex than for a short file. The TOTAL$BLKS field specifies the number of
volume blocks allocated to the file, which in this case is 21. Of these 21,20 are used for
actual data storage and 1 is used for the indirect block.

The THIS$SIZE field specifies the number of bytes of data space allocated to the file, and
does not include the size of the indirect block. This size is equal to the NUM$BLOCKS
value (20) or the sum of NBLOCKS values in the indirect block (2 + 1 + 2 + 3 + 2 + 3 +
3 + 2 + 2 = 20) multiplied by the volume granularity (1024) and equals 20480.

The TOTAUSIZE field specifies the number of bytes of data space that the file currently
occupies (designated in Figure A-3 by the shaded areas). As you can see, the file does not
occupy all the space allocated for it, so the TOTAL$SIZE value (20300) is not as large as
the THIS$SIZE value.

Disk Verification A-25

STRUCTURE OF A NAMED VOLUME

A.6 FLEXIBLE DISKETTE FORMATS

The flexible diskette device drivers supplied with the iRMX I and iRMX II Basic I/O
Systems can support several diskette characteristics, listed in Tables A-I and A-2.

Table A-I. 8-Inch Diskette Characteristics

Sector Sectors Device Size (in bytes)
Size Density per Track Format One-Sided Two-Sided

128 Single 26 Standard 256256 512512
256 Single 15 Standard 295168 590848
512 Single 8 Standard 314880 630272
1024 Single 4 Standard 315392 630784

256 Double 26 Standard 509184 1021696
512 Double 15 Standard 587264 1177600
1024 Double 8 Standard 626688 1255424

Table A-2. 5 1/4-Inch Diskette Characteristics

Device Size (in bytes)
Sector Sectors One-Sided Two-Sided
Size Density per Track Format 40 Tracks 80 Tracks 40 Tracks 80 Tracks

128 Single 16 Standard 81920 163840 163840 327680
256 Single 9 Standard 91904 184064 184064 368384
512 Single 4 Standard 81920 163840 163840 327680
1024 Single 2 Standard 81920 163840 163840 327680

256 Double 16 Standard 1617921 325632 325632 653312
512 Double 8 Standard 1617921 325632 325632 653312
512 Double 9 Uniform - - 368640 --
1024 Double 4 Standard 1617921 325632 325632 653312
512 Quad * 15 Uniform - - - 1228800

* Only supported in the iRMX® II Operating System.

For compatibility with ECMA (European Computer Manufacturers Association) and ISO
(International Organization for Standardization), the iRMX device drivers, when called by
the Human Interface FORMAT command, can format the beginning tracks of all flexible
diskettes in the same way. A configuration option for each driver enables you to specify
the following:

• For aIlS 1/4-inch and 8-inch flexible diskettes, the device drivers format track 0 of side
o with single-density, I28-byte sectors, with an interleave factor of 1.

A-26 Disk Verification

STRUCTURE OF A NAMED VOLUME

• For 8-inch, double-sided, double-density flexible diskettes, the device drivers format
track ° of side 1 with double-density, 256-byte sectors.

The iRMX device drivers map the sectors on these beginning tracks into blocks of device
granularity size so that the Basic I/O System and the Bootstrap Loader can treat flexible
diskettes as if they contained a contiguous string of blocks, all of the same size.

However, this mapping is not exact when you use 8-inch, double-sided, double-density
diskettes and specify a device granularity of 512 or 1024. A problem arises because there
are 26 128-byte sectors in a track, which is not an integral mapping for device granularities
of 512 or 1024. Thus, the device driver combines the leftover 128-byte sectors of track 0,
side ° with the first sectors of track 0, side 1 to make a block of device granularity size.
This continues throughout track 0, side 1, but the same problem occurs with the last 256-
byte sectors of track 0, side 1; not enough sectors are available to make a block of device
granularity size.

When the device driver tries to combine these leftover sectors of track 0, side 1 with the
first sectors of track 1, side 0, it finds that the sectors of track 1, side ° are already of device
granularity size. Therefore, since the device driver cannot access partial sectors, it is left
with one block (the leftover sectors of track 0, side 1) that is less than device granularity
size. When the device granularity is 512, this small block is block 19; when the device
granularity is 1024, it is block 9.

If nothing is done to exclude this smaller-than-normal block from use, the device driver will
treat this block as a normal block, assuming it is of device granularity size. Thus, if you try
to write information to that block, the driver will attempt to write an entire device
granularity block of information into a block that is much smaller, thereby losing data.

To prevent this situation, the Human Interface FORMAT command automatically
declares this smaller-than-normal block as allocated in the volume free space map when it
formats the volume. This prevents the Basic I/O System from ever writing information
into this block. If you write your own formatting utility, you should also declare this block
as allocated.

Disk Verification A-27

5 1/4-inch diskette characteristics A-26
8-inch diskette characteristics A-26
< command 2-6, 2-31
< CR > command 2-6
> command 2-6, 2-30

A
Aborting commands 2-4
Accounting file A-17
Add command 2-48
Address command 2-48
Allocate command 2-6, 2-8
Argument error 2-5
Automatic device recognition A-5, A-6

B
Backing up the volume label 3-7
Backupfnodes command 2-6, 2-11
Bad blocks 2-8, 2-46
Bad blocks file 2-10,2-62,2-63,2-70,3-2
Bad blocks map file 2-74,2-77, A-10, A-18
Bad track information, displaying 1-3
BF command 2-6, 2-11
Block allocation 2-8
Block command 2-49
Block I/O error 2-4
BOLT (Bootloader Location Table) A-8
Bootloader Location Table (BOLT) A-8
Bootstrap Loader blocks A-l

c
Checksums 1-4, 2-33, 2-38, 2-70
Command options

All 1-4
Disk 1-3
Fix 1-4
Getbadtrackinfo 1-3
List 1-5

Disk Verification

INDEX

Index-l

INDEX

C (continued)

Command options (continued)
Named 1-4
Named1 1-4
Named2 1-4
Physical 1-5
Verify 1-3

Commands
< 2-6,2-31
<CR> 2-6
> 2-6,2-30
Aborting 2-4
Allocate 2-6
Backupfnodes 2-6
BF 2-6,2-11
D 2-17
DB 2-17
DD 2-6,2-21
DF 2-6,2-24
Disk 2-6, 2-14
Displaybyte 2-17
Displaydirectory 2-6,2-21
Displayfnode 2-6, 2-24
Displaynextblock 2-6, 2-30
Displaypreviousblock 2-6, 2-31
Displaysavefnode 2-6, 2-29
Displayword 2-6,2-19
DNB 2-6, 2-30
DPB 2-6,2-31
DSF 2-6, 2-29
DW 2-6,2-19
E 2-6,2-36
Editfnode 2-6, 2-32
Editsavefnode 2-6, 2-35
EF 2-6,2-32
Error messages 2-4

Index-2

ESF 2-6, 2-35
Exit 2-6, 2-36
Fix 2-7, 2-37
Free 2-7, 2-40
GB 2-7,2-43
Getbadtrackinfo 2-7, 2-43
H 2-7,2-45
Help 2-7,2-45

Disk Verification

C (continued)

Commands (continued)
LBB 2-7,2-46
Listbadblocks 2-7, 2-46
Miscellaneous 2-7, 2-48
Names, entering 2-2
Parameters 2-3
Q 2-7,2-54
Quit 2-7,2-54
R 2-7,2-55
Radices 2-3
Read 2-7,2-55
Restorefnode 2-7, 2-57
Restorevolumelabel 2-7, 2-60
RF 2-7,2-57
RVL 2-7,2-60
S 2-7,2-65
Save 2-7, 2-62
SB 2-7,2-65
Substitutebyte 2-7, 2-65
Substituteword 2-7, 2-68
Summary 2-6
SW 2-7,2-68
Syntax 2-1
V 2-7,2-69
Verify 2-7, 2-69
W 2-7,2-79
Write 2-7,2-79

Conventions vi

D
D command 2-17
DB command 2-17
DD command 2-6,2-21
Dec command 2-50
DF command 2-6, 2-24
Directing output 1-2
Directories, displaying 2-21
Disk command 2-6, 2-14
Displaybyte command 2-17
Displaydirectory command 2-6,2-21
Displayfnode command 2-6, 2-24
Displaying R?SA VB 3-11

Disk Verification

INDEX

Index-3

INDEX

D (continued)

Displaynextblock command 2-6, 2-30
Displaypreviousblock command 2-6, 2-31
Displaysavefnode command 2-6, 2-29
Displayword command 2-6, 2-19
Div command 2-50
DNB command 2-6, 2-30
DPB command 2-6,2-31
DSF command 2-6, 2-29
Duplicate volume label file 3-2, A-I0, A-19
DW command 2-6, 2-19

E
E command 2-6, 2-36
Editfnode command 2-6, 2-32
Editsavefnode command 2-6, 2-35
EF command 2-6, 2-32
Error Messages 1-6, 2-4

Add 2-53
Address 2-53
Allocate 2-10
Backupfnodes 2-12
BF 2-12
Block 2-53
D 2-18
DB 2-18
DD 2-22
Dec 2-53
DF 2-27
Displaybyte 2-18
Displaydirectory 2-22
Displayfnode 2-27
Displaysavefnode 2-29
Div 2-53
DSF 2-29
Editfnode 2-34
Editsavefnode 2-35
EF 2-34
ESF 2-35
Free 2-41
GB 2-44
Getbadtrackinfo 2-44
Hex 2-53

Index-4 Disk Verification

E (continued)

Error Messages (continued)
LBB 2-47
Listbadblocks 2-47
Miscellaneous commands 2-53
Mod 2-53
Mul 2-53
R 2-55
Read 2-55
Restorefnode 2-58
Restorevolumelabel 2-61
RF 2-58
RVL 2-61
S 2-66
Save 2-63
SB 2-66
Sub 2-53
Substitutebyte 2-66
V 2-74
Verify 2-74
W 2-80
Write 2-80

ESF command 2-6, 2-35
Examples

Add 2-53
Address 2-53
Backupfnodes 2-13
BF 2-13
Block 2-53
D 2-18
DB 2-18
DD 2-23
Dec 2-53
DF 2-28
Disk 2-16
Displaybyte 2-18
Displaydirectory 2-23
Displayfnode 2-28
Displaying R ?SA VE 3-12
Displaysavefnode 3-12
Displayword 2-19
Div 2-53
DSF 3-12
DW 2-19

Disk Verification

INDEX

Index-S

INDEX

E (continued)

Examples (continued)
Editfnode 2-34
EF 2-34
H 2-45
Help 2~45
Hex 2-53
LBB 2-46
Listbadblocks 2-46
Miscellaneous commands 2-53
Mod 2-53
Mul 2-53
Restorefnode 2-59
Restorevolumelabel 2-61
Restoring fnodes 3-4, 3-8
Restoring the volume label 3-11
RF 2-59
RVL 2-61
RVL 3-11
S 2-67
Save 2-64
SB 2-67
Sub 2-53
Substituteword 2-68
Substitutebyte 2-67
SW 2-68
V 2-78
Verify 2-78
W 2-80
Write 2-80

Exit command 2-6,2-36

F
File descriptor node (fnode) A-10
File sizes A-22, A-25
Fix command 2-7,2-37
Fixing bad checksums 2-38
Flexible diskette formats A-26
Flexible diskette track 0 abnormalities A-26
Fnode allocation 2-8
Fnode file 3-1,3-2, A-16
Fnode file/space map file inconsistent 2-5

Index-6 Disk Verification

F (continued)

Fnodes
Access ID A -15
Altering 2-32
Auxiliary bytes A-15
Backing up on a volume 3-5
Creation time A-13
Data block identification A-14
Displaying 2-24
Flags 2-9, A-12
Freeing 2-40
Granularity A-13
last file access A-13
last modification A-13
C>vervievv A-I0
Ovvner A-13
Parent 2-69, A -15
Restoring 2-57, 3-1, 3-7
Size (bytes) actual data A-13
Size (bytes) data space A-14
Structure A-II
Type A-13
Volume blocks A-14

Free command 2-7, 2-40
Free fnodes map file 2-9, 2-41, 2-62, 2-63, 2-70, 2-73, 2-76, 3-2, A-17
Free space A-17
Free space map file 2-76

G
GB command 2-7, 2-43
Getbadtrackinfo command 2-7, 2-43

H
H command 2-7, 2-45
Help command 2-7, 2-45
Hex command 2-51

Disk Verification

INDEX

Index-7

INDEX

illegal command error 2-4
Initial files A-I0
Invocation

Error messages 1-6
Example 1-5
Interactive 1-6
Single command mode 1-5

Invocation 1-2
iRMX® II volume labels A-4
ISO volume label A-3

L
LBB command 2-7, 2-46
Listbadblocks command 2-7, 2-46
Location of files 3-1, A-21, A-22
Long files 2-69,3-1, A-22

M
Manual overview v
Marking bad blocks 2-8
Miscellaneous commands 2-7, 2-48

Add 2-48
Address 2-48
Block 2-49
Dec 2-50
Div 2-50
Hex 2-51
Mod 2-51
Mu12-52
Sub 2-52

Mod command 2-51
Modes of operation 1-1, 2-1
MSA first stage bootstrap loader A-8
MSA second stage bootstrap loader A-8
MSABOOT A-19
Mul command 2-52
MUL TIBUS® II second stage bootloader 3-2, A-8

N
Named volume structure A-I
Named volumes 1-4
Not a named disk error 2-5

Index-8 Disk Verification

o
Operational modes 1-1, 2-1
Orphan fnodes 1-4, 2-38

p

Parameters 2-3
Product overview v, 1-1

Q
Q command 2-7,2-54
Quit command 2-7,2-54

R
R command 2-7, 2-55
R?SA VB 2-11,2-15,2-29,2-35,2-57,2-58,2-60,3-2,3-5,3-11, A-19
R?SECONDSTAGE file 3-2, A-8, A-19
Radices 2-3
Read command 2-7,2-55
Reader Level v
Reading volume blocks 2-55
Restorefnode command 2-7, 2-57
Restorevolumelabel command 2-7, 2-60
Restoring fnodes 3-1
Restoring the volume label 3-10
RF command 2-7,2-57
Root directory A-IS
RVL command 2-7, 2-60

s
S command 2-7, 2-65
Save command 2-7,2-62
SB command 2-7,2-65
Seek error 2-5
Short files 3-1, A-20
Size of files 2-69, A-22, A-25
Space accounting file 3-2, A-I0
Structure of a named volume A-I
Sub command 2-52
Substitutebyte command 2-7, 2-65
Substituteword command 2-7, 2-68
SW command 2-68
Syntax error 2-4

Disk Verification

INDEX

Index-9

INDEX

T
Track ° Abnormalities, flexible diskettes A-26

v
V command 2-7, 2-69
Verify command 2-69
Volume attributes, displaying 1-3,2-14
Volume blocks, freeing 2-40
Volume free space map file 2-10,2-41,2-62,2-63,2-70,2-73,3-2, A-10, A-17
Volume label, backing up 3-7
Volume label file 2-60,3-1,3-2, A-10, A-18
Volume label, restoring 3-10
Volume labels

iRMXII A-4
ISO A-3

Volume structure, named A-2

w
W command 2-7, 2-79
Working buffer, changing contents 2-66
Write command 2-7,2-79

Index-lO Disk Verification

INTERNATIONAL SALES OFFICES

INTEL CORPORATION

3065 Bowers Avenue
Santa Clara, California 95051

BELGIUM

Intel Corporation SA
Rue des Cottages 65
B-1180 Brussels

DENMARK
Intel Denmark AlS

Glentevej 61-3rd Floor

dk-2400 Copenhagen

ENGLAND
Intel Corporation (U.K.) LTD.

Piper's Way

Swindon, Wiltshire SN3 1 RJ

FINLAND

Intel Finland OY

Ruosilante 2
00390 Helsinki

FRANCE
Intel Paris

1 Rue Edison-BP 303
78054 St.-Quentin-en-Yveli nes Cedex

ISRAEL
Intel Semiconductors LTD.
Atidim Industrial Park

NeveSharet
P.O. Box 43202
Tel-Aviv 61430

ITALY

Intel Corporation S.P.A.

Milandfiori, Palazzo E/4

20090 Assago (Milano)

JAPAN

Intel Japan K.K.

Flower-Hill Shin-machi
1-23-9, Shi nmachi

Setagaya-ku, Tokyo 15

NETHERLANDS
Intel Semiconductor (Netherland B.V.)

Alexanderpoort Building

Marten Meesweg 93
3068 Rotterdam

NORWAY

Intel Norway AlS
P.O. Box 92

Hvamveien 4
N-2013, Skjetten

SPAIN
Intel Iberia

Calle Zurbaran 28-IZQDA

28010 Madrid

SWEDEN
Intel Sweden A.B.
Dalvaegen 24

S-171 36 Sol na

SWITZERLAND

Intel Semiconductor A.G.
Talackerstrasse 17
8125 Glattbrugg

CH-8065 Zurich

WEST GERMANY

Intel Semiconductor G.N.B.H.

Seidlestrasse 27
D-8000 Munchen

• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •

•

• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •

INTEL CORPORATION
3065 Bowers Avenue
Santa Clara, California 95051
(408) 987-8080

• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •

• • • • • • • • • • • • • • •
• • • • • • • • • • • • • • •
• • • • • • • • • • • • • • •
• • • • • • • • • • • • • • •
• • • • • • • • • • • • • • •
• • • • • • • • • • • • • • •
• • • • • • • • • • • • •
• • • • • • • • • • • • •
• • • • • • • • • • • • • • •
• • • • • • • • • • • • • • •
• • • • • • • • • • • • • • •
• • • • • • • • • • • • • • •
• • • • • • • • • • • • • • •
• • • • • • • • • • • • • • •
• • • • • • • • • • • • •
• • • • • • • • • • • • •
• • • • • • • • • • • • • • •
• • • • • • • • • • • • • • •
• • • • • • • • • • • • • • •
• • • • • • • • • • • • • • •

