

Oa$OVERLAY

Condition Codes

E$OK

E$SUPPORT

OOOOH No exceptional conditions.

0023H An supported operation was attempted.

In addition to the condition code listed above, DQ$OVER$LA Y can return the condition
codes associated with the Extended I/O system call RQSOVERLA Y. See the iRMX® II
Extended I/O System Calls Reference Manual for details.

un I System Calls 47

DQ$READ

The DQ$READ system call copies bytes from a file into a buffer.

bytes$read = DQ$READ (connection$t, buff$ptr, count, except$ptr);

Input Parameters
connection$t A TOKEN for the connection to the file. This connection must be

open for reading or for both reading and writing, and the file
pointer of the connection must point to the first byte to be read.

buff$ptr

count

A POINTER to the buffer that is to receive the data from the file.

A WORD containing the requested number of bytes to be read
from the file.

Output Parameters
bytes$read

except$ptr

A WORD containing the number of bytes actually read. This
number is always equal to or less than count.

A POINTER to a WORD where the system places the condition
code.

Description

This system call reads a collection of contiguous bytes from the file associated with the
connection. The bytes are placed into the buffer specified in the call. If bytes$read is less
than count and the exception code returned from the DQ$READ system call is E$OK, an
end of file was encountered. If you type an interrupt or a terminate character from the
console, for example a CONTROL-C, while the operating system performs a read
operation, an E$OK exception code is returned and bytes$read is set to zero.

The Buffer

48

The buff$ptr parameter tells the operating system where to place the bytes when they are
read. Your program must provide this buffer. DQ$READ copies as many bytes as it is
instructed to copy (unless it encounters the end of the file). If the buffer is not long
enough, copying continues beyond the end of the buffer.

UDI System Calls

DQ$READ

Number of Bytes Read

The number of bytes that your program requests is the maximum number of bytes that
DQ$READ copies into the buffer. However, there are circumstances under which the
system reads fewer bytes.

• If the DQ$READ detects an end of file before reading the number of bytes requested,
it returns only the bytes preceding the end of file. In this case, the bytes$read
parameter is less than the count parameter, yet no exceptional condition is indicated.

• If an exceptional condition occurs during the reading operation, information in the
buffer and the value of the bytes$read parameter are meaningless and should be
ignored.

• If a CONTROL-C (interrupt or terminate) character is typed at the console (see
description) .

Connection Requirements

The connection must be open for reading or updating. If it is not, DQ$READ returns an
exceptional condition.

Condition Codes

E$OK OOOOR No exceptional conditions.

E$SUPPORT 0023H An unsupported operation was attempted.

In addition to the condition codes listed above, DQ$READ can return the condition codes
associated with the Extended I/O system call RQSREAD$MOVE (except
E$FLUSHING). See the iRM)(® II Extended I/O System Call Reference Manual for details.

UDI System Calls 49

DQ$RENAME

The DQ$RENAME system call changes the pathname of a file.

CALL DQ$RENAME (path$ptr, new$path$ptr, except$ptr);

Input Parameters

path$ptr A POINTER to a STRING that specifies the pathname of the file to
be renamed.

new$path$ptr A POINTER to a STRING that specifies the new pathname for the
file. This path must not refer to an existing file.

Output Parameter
except$ptr A POINTER to a WORD where the system places the condition

code.

Description

so

This system call allows your programs to change the pathname of a data or a directory file.
Be aware that when you rename a directory, you are changing the pathnames of all files
contained in the directory. When you rename a file to which a connection exists--this is
permitted--the connection to the renamed file remains established.

A file's pathname may be changed in any way, provided the file or directory remains on the
same volume. Successfully renaming a file without appropriate access permission depends
on the operating system.

If your operating system does not allow renaming a file to another volume or storage
device, an E$SUPPORT exception is returned.

UDI System Calls

OQ$RENAME

Condition Codes

E$OK

E$FEXIST

E$SUPPORT

E$FNEXIST

OOOH No exceptional conditions.

0020H The file represented by new$path$ptr already
exists.

0023H The file represented by new$path$ptr exists on
another volume.

0021H The file represented by path$ptr does not exist.

In addition to these condition codes, DQ$RENAME can return the condition codes
associated with the Extended I/O System call RQSRENAME$FILE. See the iRM)(® II
Extended I/O System Calls Reference Manual for details.

UDI System Calls 51

DQ$RESERVE$IO$MEMORY

The DQ$RESERVE$IO$MEMORY system call lets your program reserve enough
memory to ensure that it can open and attach the files it will be using.

CALL DQ$RESERVE$IO$MEMORY (number$files, number$buffers, except$ptr);

Input Parameters
number$files A WORD whose value indicates the maximum number of files the

program will have attached simultaneously. This value must not be
greater than 12. Moreover, no more than 6 of these files may be
open simultaneously.

number$buffers A WORD whose value indicates the total number of buffers (up to a
maximum of 12) that will be needed at one time. For example, if
your program will have two files open at the same time, and each of
them has two buffers (specified when they are opened),
number$files should be two and number$buffers four.

If you specify a value for number$files or number$buffers that
exceeds the limits explained above, an E$SUPPORT exception will
be returned. If you specify a zero for both number$files and
number$buffers, the memory reserved earlier will be returned to the
memory pool.

Output Parameter

except$ptr A POINTER to a WORD where the system places the condition
code.

Description

S2

DQ$RESERVE$IO$MEMORY sets aside memory on behalf of the calling program,
guaranteeing that it will be available when needed later for attaching and opening files.
This memory is used for internal UDI data structures when the program requests file
connections via DQ$ATTACH and for buffers when the program opens file connections
via DQ$OPEN. Memory reserved in this way is not eligible to be allocated by
DQ$ALLOCATE or DQ$MALLOCATE. Your program should call
DQ$RESERVE$IO$MEMORY before making any calls to DQ$ALLOCATE or
DQ$MALLOCATE.

UDI System Calls

OQ$RESERVE$IO$MEMORY

For an application to be portable across all operating systems that support UDI, it should
not allow I/O without first explicitly reserving the memory by calling
DQ$RESERVE$IO$MEMORY. In the call to DQ$RESERVE$IO$MEMORY, you may
specify as many as 12 files (that can be attached using the reserved memory) and as many
as 12 buffers (that can be requested when opening files).

NOTE

If a program calls DQ$RESERVE$IO$MEMORY after making one or
more calls to DQ$A TTACH or DQ$OPEN, the memory used by those calls
is immediately applied against the file and buffer counts specified in the
DQ$RESERVE$IO$MEMORY call, possibly exhausting the memory
supply being requested.

If your program calls DQ$RESERVE$IO$MEMORY more than once in a program, it
simply increases or decreases the amount of memory reserved, unless your requests total
more than 12 files or 12 buffers. If the requests exceed the maximum number of files or
buffers, the maximum is reserved and no error is returned.

Restriction

This system call is effective only if your program uses exclusively UDI system calls to
communicate with the iRMX Operating System.

Portability across operating systems that support the UDI cannot be guaranteed if your
application requires more than 12 files attached simultaneously or a group of
simultaneously open files whose total number of buffers exceeds 12.

Condition Codes

E$OK

E$MEM

E$SUPPORT

UDI System Calls

OOOOH No exceptional conditions.

0002H Insufficient memory remains to complete the
call.

0023H At least one of the following is true:

• The value specified for number$files is
grea ter than 12.

• The value specified for number$buffers is
grea ter than 12.

53

DQ$SEEI(

DQ$SEEK moves the file pointer associated with the specified connection.

CALL DQ$SEEK (connection$t, mode, offset, except$ptr)

Input Parameters

connection$t

mode

offset

Output Parameter

except$ptr

54

A TOKEN for the open connection whose file pointer is to be
moved.

A BYTE indicating the type of file pointer movement being
requested, as follows:

1

2

3

4

Meaning

Move the pointer backward by the specified
move count. If the move count is large
enough to position the pointer past the
beginning of the file, the pointer is set to
the first byte of the file (position zero).

Set the pointer to the position specified by
the move count. Position zero is the first
position in the file. Moving the pointer
beyond the end of the file is permitted.

Move the file pointer forward by the
specified move count. Moving the pointer
beyond the end of the file is permitted.

First move the pointer to the end of the
file and then move it backward by the
specified move count. If the specified move
count would position the pointer beyond the
front of the file, the pointer is set to the
first byte in the file (position zero).

A DWO RD specifying either how far, in bytes, the file pointer is to
be moved, or the exact position in the file to which the pointer is to
be moved.

A POINTER to a WORD where the system places the condition
code.

UDI System Calls

OQ$SEEK

Description

When performing non-sequential I/O, your programs can use this system call to position
the file pointer before using the DQ$READ, DQ$TRUNCA TE, or DQ$WRITE system
calls. The location of the file pointer specifies where in the file a DQ$READ,
DQ$WRITE, or DQ$TRUNCA TE operation is to begin. If your program is performing
sequential I/O on a file, it need not use this system call.

You can position the file pointer beyond the end of a file. If your program does this and
then invokes the DQ$READ system call, DQ$READ behaves as though the read
operation began at the end of file. If your program calls DQ$WRITE when the file pointer
is beyond the end of the file, the file is extended and the data is written as requested. A
subsequent DQ$READ returns an end of file condition. Attempting a seek past the end of
a file without performing an explicit DQ$WRITE call and subsequently expecting the file
to be lengthened, will produce indeterminate results.

Condition Codes

E$OK

E$PARAM

OOOOR No exceptional conditions.

0023R The mode parameter was set to 0 or 5-255.

In addition to the condition code listed above, DQ$SEEK can return the condition codes
associated with the Extended I/O system call RQSSEEK. See the iRMX® Extended I/O
System Calls Reference Manual for details.

unr System Calls 55

OQ$SPECIAL

DQ$SPECIAL sets options or specifies actions to be performed in the program execution
environment.

CALL DQ$SPECIAL (mode, parameter$ptr, except$ptr);

Input Parameters
mode

parameter$ptr

Output Parameter

except$ptr

Descri ption

A BYTE used to specify the options to be set or the actions to be
performed. Values and meanings of mode are

Value Meaning

1 Transparent

2 Line editing (default value)

3 Polling

4-5 Reserved

6 Baud rate

Each of these modes is explained in the Description section.

A POINTER. See complete explanation in the Description section.

A POINTER to a WORD where the system places the condition
code.

This system call changes the mode in which your program receives input from a console
input device. When your system starts to run, the mode is line editing (mode 2). By using
DQ$SPECIAL, you can change to either of the other two modes, or back to line editing.

56 UDI System Calls

DQ$SPECIAL

The meanings of the mode parameter values are as follows:

Value Meaning

1

2

3

4-5

6

UDI System Calls

Transparent. Interactive programs must often obtain characters from the
console exactly as they are typed. DQ$READ returns control to the calling
program when the number of characters entered equals the number of
characters specified in the read request.

Line Editing. This option enables you to correct typing errors with special
keys before the application program receives the characters typed.
Characters used for editing are operating-system-dependent. The
RETURN character is always converted to CARRIAGE-RETURN-LINE­
FEED (CRLF).

Polling. This option is nearly the same as Transparent (1) mode, except
that in Polling mode DQ$READ returns control to your program
immediately after it is called, regardless of whether any characters have
been typed since the last call to DQ$READ. If no characters have been
typed, this is indicated by the bytes$read parameter of the DQ$READ call.
Characters typed between successive calls to read the terminal are held in
the "type-ahead" buffer.

where

parameter$ptr A POINTER to a TOKEN for a connection
to the :CI: file previously established by
DQ$ATTACH.

Reserved, E$SUPPO RT will be returned.

Baud Rate

where

Specifies baud rate selection for an asynchronous line.

parameter$ptr points to this structure:

DECLARE LINE BASED parameter$ptr STRUCTURE (
conn TOKEN,
in$baud$rate BYTE,
out$baud$rate BYTE);

57

DQ$SPECIAL

where

LINE. Conn is a connection previously established by a
DQ$ATTACH call.

LINE.in$baud$rate specifies the desired input baud rate.

LlNE.out$baud$rate specifies the desired output baud rate.

These values specify baud rate:

Byte Value Baud Rate

0 Unspecified
1 300
2 600
3 1200
4 2400
5 4800
6 9600
7 19200

8-255 Reserved

Condition Codes

58

E$OK

E$SUPPORT

OOOH No exceptional conditions.

0023H The mode parameter represents an unsupported
mode.

In addition to the condition codes listed above, DQ$SPECIAL can return the condition
codes associated with the Extended I/O system call RQSSPECIAL. See the iRMX®
Extended I/O System Calls Reference Manual for details.

UDI System Calls

DQ$SWITCH$BUFFER

DQ$SWITCH$BUFFER substitutes a new command line for the existing one.

char$offset = DQ$SWITCH$BUFFER (buff$ptr, except$ptr);

Input Parameter
buff$ptr

Output Parameters

A POINTER to a buffer containing the "new" command line. That
is, the one whose arguments are to be returned by subsequent calls
to DQGETARGUMENT. The buffer must not exceed 32 K­
bytes in length.

char$offset A WORD into which the UDI places a number. This number
represents the number of bytes from the beginning of the "old"
command line to the last character of the last argument so far
processed by DQGETARGUMENT. In other words, the value in
char$offset tells how many characters in the old command line have
been processed by the time of this call.

except$ptr

Description

A POINTER to a WORD where the system places the condition
code.

When your program is invoked from the console, the operating system places the
invocation command into a buffer. Typically, your program will use
DQGETARGUMENT to obtain the arguments in that command. If your program
subsequently calls DQ$READ to obtain an additional command line from the console, it
can call DQ$SWITCH$BUFFER to designate the buffer with the new command line as
that from which arguments are to be obtained when DQGETARGUMENT is called.

You can use DQ$SWITCH$BUFFER any number of times to point to different strings in
your program. However, you cannot use DQ$SWITCH$BUFFER to return to the
command line that invoked the program, because only the operating system knows the
location of that buffer. Therefore, you should use DQGETARGUMENT to obtain all
arguments of the invocation command line before issuing the first call to
DQ$SWITCH$BUFFER.

UDI System Calls 59

OQ$SWITCH$BUFFER

60

A second service of DQ$SWITCH$BUFFER is that it returns the location of the last byte
of the last argument so far obtained from the old buffer by calls to
DQGETARGUMENT. Therefore, in addition to using DQ$SWITCH$BUFFER to
switch buffers, you can use it after one or more DQ$GEUARGUMENT calls to
determine where in the buffer the next argument starts. However, doing this "resets" the
buffer, in the sense that the next call to DQ$GEUARGUMENT would return the first
argument in the buffer. To return to the desired point in the buffer, where you can
continue to extract arguments, call DQ$SWITCH$BUFFER again, but when doing so, use
the sum of the starting address of the buffer and the value returned by the previous call to
DQ$SWITCH$BUFFER. The following is an example showing how to use the second
service of DQ$SWITCH$BUFFER:

DECLARE
E$OK LITERALLY '0'
E$ FATAL$ EXIT LITERALLY '3'
mybuffer$ptr POINTER,
buff$ptr POINTER,
arg$ptr POINTER,
buff STRUCTURE (

offset WORD,
segment WORD) AT (@buff$ptr),

next$char
char$offset
condition$code
delimit$char

•
•
•

WORD,
WORD,
WORD,
BYTE;

1* initialize buff$ptr and next$char *1

buff$ptr = mybuff$ptr;
next$char = 0;

•
•
•

1* determine where in the buffer the next argument starts *1

char$offset = DQ$SWITCH$BUFFER(buff$ptr, @condition$code);
IF condition$code <> E$OK THEN 1* do error processing *1

CALL DQ$EXIT(E$FATAL$EXIT)
next$char = char$offset + next$char;

(Example continued on next page)

UDI System Calls

DQ$SWITCH$BUFFER

"1* return to desired point in buffer *1

buff.offset = buff.offset + char$offset;
char$offset = DQ$SWITCH$BUFFER(buff$ptr, @condition$code);

IF condition$code <> E$OK THEN 1* do error processing *1
CALL DQ$EXIT(E$FATAL$EXIT)

1* get next argument *1

delimit$char = DQ$GET$ARGUMENT(arg$ptr, @condition$ptr);
IF condition$code <> E$OK THEN 1* do error processing *1

CALL DQ$EXIT(E$FATAL$EXIT)
•
•
•

Condition Codes

E$OK OOOOH No exceptional conditions.

In addition to the condition code listed above, DQ$SWITCH$BUFFER can return the
condition codes associated with the Human Interface system call
RQCSET$PARSE$BUFFER. See the iRMX!IDHuman Interface System Calls Reference
Manual for details.

UDI System Calls 61

OQ$TRAP$CC

DQ$TRAP$CC lets you specify a procedure that gains control if an operator enters an
interrupt character (such as CONTROL-C) at the console.

CALL DQ$TRAP$CC (cc$routine$ptr, except$ptr);

Input Parameter
cc$routine$ptr A POINTER to the entry point of your interrupt procedure.

Output Parameter
except$ptr A POINTER to a WORD where the system places the condition

code.

Description

The action the default interrupt procedure takes depends on the operating system. Using
the DQ$TRAP$CC system call lets you substitute an alternate interrupt procedu"re that
will automatically receive control when you enter an interrupt character on the console.
(See the iRMX® Human Interface User's Guide for more information.) The context of the
program executing at the time you invoke DQ$TRAP$CC is saved by the operating system.
Due to this context switch, the contents of the CPU registers at the time the interrupt
procedure receives control may not be those associated with your program. The CPU
registers may contain values for an internal task that was executing when the interrupt
character was entered.

To ensure portability across other operating systems, a GOTO statement (PL/M, C,
FORTRAN, etc.) must not branch outside the DQ$TRAP$CC procedure's routine.

Condition Codes

E$OK OOOOR No exceptional conditions.

62 UDI System Calls

DQ$TRAP$EXCEPTION

DQ$TRAP$EXCEPTION substitutes an alternate exception handler for the default
exception handler provided by the operating system.

CALL DQ$TRAP$EXCEPTION (handler$ptr, except$ptr);

Input Parameter
handler$ptr

Output Parameter
except$ptr

Description

A POINTER to a STRUcruRE containing a long pointer to the
entry point of the alternate exception handler. The STRUCTURE
has the form

DECLARE handler$ptr STRUCTURE (
offset WORD,
base TOKEN) ;

A POINTER to a WORD where the system places the condition
code.

DQ$TRAP$EXCEPTION designates an alternate exception handler as the one to which
control should pass when an exceptional condition occurs. The DQ$TRAP$EXCEPTION
routine should restore the default exception handler before it terminates. Therefore, your
program should call DQGETEXCEPTION$HANDLER before calling
DQ$TRAP$EXCEPTION to get the default exception handler address.

See the section Condition Codes and Exception-Handling Calls at the beginning of this
manual for an explanation of the conditions of the stack when your alternate exception
handler receives control.

Condition Codes

E$OK OOOOH No exceptional conditions.

In addition to the condition code listed above, DQ$TRAP$EXCEPTION can return the
condition codes associated with the Nucleus system call
RQSETEXCEPTION$HANDLER. See the iRM)(® II Nucleus System Calls Reference
Manual or the iRMX® I Nucleus System Calls Reference Manual for details.

VDI System Calls 63

DQ$TRUNCATE

DQ$TRUNCATE moves the end-of-file to the current position of a named file
connection's file pointer, thereby freeing the portion of the file lying beyond the file
pointer.

CALL DQ$TRUNCATE (connection$t, except$ptr);

Input Parameter
connection$t A TOKEN for an open connection to the named data file that is to

be truncated. The file pointer of this connection marks the place
where truncation is to occur. The byte indicated by the file pointer
is the first byte to be dropped from the file.

Output Parameter
except$ptr A POINTER to a WORD where the system places the condition

code.

Description

This system call truncates a file at the current setting of the file pointer and releases all file
space beyond the pointer for reallocation to other files. If the pointer is at or beyond the
end of file, no truncation is performed. Unless the file pointer is already at the proper
location, your program should use the DQ$SEEK system call to position the pointer before
calling DQ$TRUNCATE. .

The connection should have write, or read and write access rights, established when the
connection was opened.

Condition Codes

64

E$OK

E$SUPPORT

OOOOR No exceptional conditions.

0023R An unsupported operation was attempted.

In addition to the condition codes listed above, DQ$TRUNCATE can return the condition
codes associated with the Extended I/O system call RQSTRUNCA TE$FILE. See the
iRM)(® Extended I/O System Calls Reference Manual for details. .

UDI System Calls

DQ$WRITE

The DQ$WRlTE system call copies a collection of bytes from a buffer into a file.

CALL DQ$WRITE (connection$t, buff$ptr, count, except$ptr);

Input Parameters
connection$t

buff$ptr

count

Output Parameter
except$ptr

Description

A TOKEN containing the connection to the file into which the
information is to be written.

A POINTER to a buffer containing the data to be written to the
specified file.

A WORD containing the number of bytes to be written from the
buffer to the file.

A POINTER to a WORD where the system places the condition
code.

This system call causes the operating system to write the specified number of bytes from
the buffer to the file.

Number of Bytes Written

Occasionally, DQ$WRlTE writes fewer bytes than requested by the calling program. This
happens under the following two circumstances:

• When DQ$WRlTE encounters an I/O error.

• When the volume to which your program is writing becomes full.

Where the Bytes Are Written

DQ$WRITE starts writing at the location specified by the connection's file pointer. After
the writing operation is completed, the file pointer points to the byte immediately following
the last byte written.

If your program must reposition the file pointer before writing, it can do so by using the
DQ$SEEK system call.

UDI System Calls 65

OQ$WRITE

Condition Codes

66

E$OK

E$SUPPORT

E$SPACE

OOOOH No exceptional conditions.

0023H An unsupported operation was attempted.

0029H Inadequate memory space remains to complete
the write.

In addition to the condition code listed above, DQ$WRlTE can return the condition codes
associated with the Extended I/O system call RQSWRlTE$MOVE. See the iRMX®
Extended I/O System Calls Reference Manual for details.

UDI System Calls

A
Access mask 11
Access rights 10

from the ACCESS field of DQGETCONNECTION$STATUS 32
needed to perform DQ$TRUNCATE 64
OWNER$ACCESS field in DQ$FILE$INFO 25
selecting 44

8
Baud rate

how to set using DQ$SPECIAL 57
value for mode parameter of DQ$SPECIAL 56

BND286, using to create overlay files 46
Buffer 29

DQ$CLOSE 15
for DQGETSYSTEM$ID 38
for DQ$READ 29
for the buff$ptr parameter of DQ$READ 48
number required for DQ$OPEN 43
the buff$ptr parameter of DQ$SWITCH$BUFFER 59
the buff$ptr parameter of DQ$WRITE 65
the number$buffers parameter of DQ$RESERVEIOMEMORY 52

C
CI (console input) 44
CO (console output) 44
Command line 30

parsing with DQGETARGUMENT 29
Compa tibility

DQGETTIME system call 39
number of buffers permitted in the DQ$OPEN system call 44
setting the ACCESS bit of DQ$CHANGE$ACCESS for 10

INDEX

setting the ACCESS field of the DQGETCONNECTION$STA TUS system call 32
setting the WORLD$ACCESS field of DQ$FILE$INFO system call 25

Condition codes 3
Condition codes, table of 1, 2
Connection

Boolean test for state 32
creating using DQ$CREATE 16
default access rights 11
deleting using DQ$DETACH 21

un I System Calls Index -1

Index

freeing buffers associated with a connection 15
getting information using DQGETCONNECTION$STATUS 32
moving the file pointer 54
requirements for DQ$READ 49
truncating the associated file 64

Connection, specifying the number of buffers required for 43
CONTROL-C 4, 48, 49, 57, 62

D
Data structure

for DQ$DECODE$TIME 18
for DQ$FILE$INFO 24
for DQGETCONNECTION$STATUS 32
for DQ$SPECIAL 57
for DQ$TRAP$EXCEPTION 63

DATE 18, 19, 39
Default user 11
Delimiter 29, 30

example of delimiters returned from DQGETARGUMENT 30
DQ$ALLOCATE 7
DQ$ATIACH 8
DQ$CHANGE$ACCESS 10
DQ$CHANGE$EXTENSION 13
DQ$CLOSE 15
DQ$CREATE 16
DQ$DECODE$EXCEPTION 17
DQ$DECODE$TIME 18
DQ$DELETE 20
DQ$DETACH 21
DQ$EXIT 22
DQ$FILE$INFO 24
DQ$FREE 28
DQGETARGUMENT 29
DQGETCONNECTION$STATUS 32
DQGETEXCEPTION$HANDLER 34
DQGETMSIZE 36
DQGETSIZE 37
DQGETSYSTEM$ID 38
DQGETTIME 39
DQ$MALLOCATE 40
DQ$MFREE 42
DQ$OPEN 43
DQ$OVERLA Y 46
DQ$READ 48
DQ$RENAME 50

Index - 2 UDI System Calls

DQ$RESERVE$IO$MEMORY 52
DQ$SEEK 54
DQ$SPECIAL 56

baud rate 57
line editing 57
polling 57

DQ$SWITCH$BUFFER 59
DQ$TRAP$CC 62
DQ$TRAP$EXCEPTION 63
DQ$TRUNCATE 64
DQ$WRITE 65

E
End of file 48, 49, 55, 64
Examples

delimiters returned by DQGETARGUMENT 30
DQ$SWITCH$BUFFER 60

Exception handling
getting the address of the current exception handler 34
using your own exception handler 63

F
File

changing the pathname 50
creation 16
deletion 20
extension 13
information 24, 32
operations 43, 48, 52, 64, 65
pointer 54, 64
size 25

Free space pool, requesting additional memory from 7

Interactive programs
getting characters from the console 57
opening CI and CO for interactive programs 44

Interrupt procedure 62

L
Line editing mode 57

M
Memory

block 36,42
pool 7,28,40,42,52

UDI System Calls

Index

Index - 3

Index

reservation 45,52
Mode

file pointer seeks 54
parameter of DQ$FILE$INFO 24
parameter of DQ$OPEN 43
terminal 56

Model of segmentation 34, 40

o
Object

file 13
user 11

Object file 13
Operating system identification 38
OSC sequences 57
OVL286, using to create programs that use overlays 46
Owner ID 11
Owner of a file 10

p
Performance 44
PL/M 3,40
PL/M-286 46
Polling 56
Portability 46, 53, 62
Program control

DQ$EXIT 22
DQ$OVERLA Y 46
DQ$TRAP$CC 62
system calls 4

R
Reserving memory 45, 52
Root module 46

S
Segment 7,28,36,37
System calls

descriptions 3
dictionary 4
exception-handling 6
file-handling 4
memory management 5
program control 4
utility and command parsing 6

Index - 4 UDI System Calls

T
Task 7, 22, 62
Terminal modes

polling 56
Terminating programs 22
TIME 18,39
Transparent mode 57

U
UD I library 46
User

default 11
ID 11,24
object 11
WORLD 10

User object 11

W
WORLD 10,11,25
WORLD user 10

UDI System Calls

Index

Index - 5

REQUEST FOR READER'S COMMENTS

i RMX~ U DI System Call
Reference Manuel

462919-00

Intel's Technical Publications Departments attempt to provide publications that meet the needs of all
Intel product users. This form lets you participate directly in the publication process. Your comments
will help us correct and improve our publications. Please take a few minutes to respond.

Please restrict your comments to the usability, accuracy, organization, and completeness of this
publication. If you have any comments on the product that this publication describes, please contact
your Intel representative.

1. Please describe any errors you found in this publication (include page number).

2. Does this publication cover the information you expected or required? Please make suggestions
for improvement.

3. Is this the right type of publication for your needs? Is it at the right level? What other types of
publications are needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this publication on a scale of 1 to 5 (5 being the best rating).

NAME __ DATE

TITLE
COM~NYNAM~DEPARTMENT __ _

ADDRESS __ P_H_O_N_E_(~~ __________ _

CITY STATE ZIP CODE
----------------------------------- --------------------

(COUNTRY)

Please check here if you require a written reply. D

VE'D LIKE YOUR COMMENTS, , ,

'his document is one of a series describing Intel products. Your comments on the back of this form will
lelp us produce better manuals. Each reply will be carefully reviewed by the responsible person. All
omments and suggestions become the property of Intel Corporation,

: you are in the United States, use the preprinted address provided on this form to return your
omments. No postage is required. If you are not in the United States, return your comments to the Intel
ales office in your country. For your convenience, international sales office addresses are printed on
1e last page of this document.

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 79 HILLSBORO, OR

POSTAGE WILL BE PAID BY ADDRESSEE

Intel Corporation
OMSO Technical Publications, MS: HF3-72
5200 N.E. Elam Young Parkway
Hillsboro, OR 97124·9978

11

NO POSTAGE
NECESSARY
IF MAILED

INTHE
UNITED STATES

INTERNATIONAL SALES OFFICES

INTEL CORPORATION

3065 Bowers Avenue

Santa Clara, California 95051

BELGIUM

Intel Corporati on SA
Rue des Cottages 65
B-1180 Brussels

DENMARK
Intel Denmark AlS

Glentevej 61-3rd Floor

dk-2400 Copenhagen

ENGLAND
Intel Corporation (U.K.) LTD.

Piper's Way

Swindon, Wiltshire SN3 1 RJ

FINLAND

Intel Finland OY

Ruosilante 2
00390 Helsinki

FRANCE
Intel Paris

1 Rue Edison-BP 303
78054 St.-Quentin-en-Yvelines Cedex

ISRAEL
Intel Semiconductors LTD.
Atidim Industrial Park

Neve Sharet
P.O. Box 43202
Tel-Aviv 61430

ITALY

Intel Corporation S.P.A.

Milandfiori, Palazzo E/4
20090 Assago (Milano)

JAPAN
Intel Japan K.K.

Flower-Hill Shin-machi
1-23-9, Shinmachi

Setagaya-ku, Tokyo 15

NETHERLANDS

Intel Semiconductor (Netherland B.V.)

Alexanderpoort Building

Marten Meesweg 93
3068 Rotterdam

NORWAY
Intel Norway AlS

P.O. Box 92
Hvamveien 4

N-2013, Skjetten

SPAIN

Intel Iberia

Calle Zurbaran 28-IZQDA
28010 Madrid

SWEDEN
Intel Sweden A.B.
Dalvaegen 24

S-171 36 Solna

SWITZERLAND

Intel Semiconductor A.G.
Talackerstrasse 17
8125 Glattbrugg

CH-8065 Zurich

WEST GERMANY

Intel Semiconductor G.N.B.H.
Seidlestrasse 27
0-8000 Munchen

inter

• • • • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •

• • • • • • • •

INTEL CORPORATION
3065 Bowers Avenue

• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •

Santa Clara, California 95051
(408) 987-8080

• • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • •

