
A AP-720

Order Number: 272753-001

APPLICATION
NOTE

Programming Flash Memory
through the Intel386™ EX Embedded
Microprocessor JTAG Port

Daniel Hays - Applications Engineer

Dmitrii Loukianov - Field Applications Engineer

August 8, 1995

Intel Corporation
5000 West Chandler Boulevard
Chandler, AZ 85226

Information in this document is provided solely to enable use of Intel products. Intel assumes no liability
whatsoever, including infringement of any patent or copyright, for sale and use of Intel products except as provided
in Intel’s Terms and Conditions of Sale for such products.

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which
may appear in this document nor does it make a commitment to update the information contained herein.

Intel retains the right to make changes to these specifications at any time, without notice.

Contact your local Intel sales office or your distributor to obtain the latest specifications before placing your product
order.

MDS is an ordering code only and is not used as a product name or trademark of Intel Corporation.

Intel Corporation and Intel's FASTPATH are not affiliated with Kinetics, a division of Excelan, Inc. or its FASTPATH
trademark or products.

*Other brands and names are the property of their respective owners.

Additional copies of this document or other Intel literature may be obtained from:

Intel Corporation
Literature Sales
P.O. Box 7641
Mt. Prospect, IL 60056-7641

or call 1-800-879-4683

© INTEL CORPORATION 1995

A Contents

iii

Programming Flash Memory through the Intel386™ EX
Embedded Microprocessor JTAG Port

1.0 INTRODUCTION ..1

1.1 Design Motivation ...1

2.0 BACKGROUND INFORMATION ...1

2.1 IEEE 1149.1 - The JTAG Specification ...1

2.1.1 TAP Signal Descriptions ...2

2.1.2 JTAG State Machine ..2

2.2 Intel386 EX Embedded Processor JTAG Test-Logic Unit ...3

2.2.1 Boundary Scan Register ..4

2.2.2 Identification Code Register ...6

2.3 Intel 4 Mbit Boot Block Flash ..6

3.0 SAMPLE DESIGN ..6

3.1 TAP Hardware Interface ...6

3.2 JTAG Software Interface ...8

3.2.1 Hardware Considerations ..8

3.2.2 Assembly Language Routines ...8

3.2.3 “C” Routines ...9

3.2.4 Program Operation and Options ..10

4.0 PERFORMANCE ANALYSIS AND CONSIDERATIONS11

5.0 CONCLUSION ...12

6.0 RELATED INFORMATION ...12

APPENDIX A
PROGRAM SOURCE CODE

APPENDIX B
Intel386 TM EX Embedded Processor BSDL File

FIGURES
Figure 1. TAP Controller (Finite State Machine) .. 3

Figure 2. TAP Parallel Port Interface.. 7

TABLES
Table 1. Test-Logic Unit Instructions... 4

Table 2. Boundary-scan Register Bit Assignments ... 5

Table 3. Device Identification Codes... 6

Table 4. TAPLOADER.EXE Order of Execution ... 10

Table 5. TAP Flash Programming Sample Timings .. 11

Table 6. Related Intel Documents ... 12

Table A-1. Program Source Code... A-1

Table B-1. BSDL File .. B-1

A AP-720

1

1.0 INTRODUCTION

This application note describes a simple method for
programming data into flash memory using a standard
JTAG (Joint Test Action Group) port specified by IEEE
1149.1. The JTAG device used in this case is the
Intel386TM EX embedded processor; however, the scope of
this application is easily extended to many other JTAG
compliant devices. Using the features of the Intel386 EX
embedded processor in conjunction with a simple hardware
interface, a standard set of software routines can be used to
program data into flash memory. By controlling the CPU’s
JTAG port, these routines manage the data that is
programmed into flash memory as well as the processor’s
control lines.

This document contains a general overview of:

• The basic functions specified by IEEE 1149.1

• The operation of the JTAG port of the Intel386 EX
processor

• The features of the Intel 28F400BV-T 4-Mbit Boot
Block device flash device

This application note also provides a functional design
which can be used in conjunction with Revision 2.1 of the
EV386EX Intel386TM EX Embedded Microprocessor
Evaluation Board. The design consists of:

• A simple low-cost parallel port host interface design

• A standard set of JTAG C++ in-line assembly source
code functions

• Source code that implements the programming,
validation, and erasure of the contents of the Boot
Block flash device

The compiled and executable code are available through
Intel’s America’s Application Support BBS, at (916) 356-
3600. They are contained in the file TAPLOADR.ZIP.

1.1 Design Motivation

As more packaged silicon devices populate printed circuit
boards, the connection of test and programming equipment
to the fine-pitch IC packages replacing socketed, broader-
pitch parts becomes less feasible. Furthermore, the design
of mobile equipment with even smaller form factors and
more stringent shock tolerance requirements does not allow
the designer to use sockets at all. The components in this
case must be soldered directly onto the board to reduce
manufacturing costs, improve reliability, and decrease the

space required by the hardware. Additionally, Just-In-Time
manufacturing requirements make it desirable to solder
unprogrammed devices, such as flash memory, onto printed
circuit boards. This allows designers to customize the
boards in their final stage, while reducing the amount of
inventory that is required by the use of preprogrammed
devices.

These constraints make the programming of bootstrap
software and other firmware an even more formidable task
than in the past. It is now desirable to download these
integral pieces of the product into initially unprogrammed
memories on the board in order to have the microprocessor
up and running when it comes time to develop, test, and
manufacture systems which take advantage of the latest
advanced technologies. A good solution is to use a simple
flash memory programming device that uses the Test
Access Port (TAP) found on JTAG-compliant devices.

2.0 BACKGROUND INFORMATION

Designers unfamiliar with the features of the IEEE 1149.1
specification, the Intel386 EX embedded processor, or the
Intel 28F400BV-T Boot Block flash will benefit from a
brief overview of the features that these pieces provide. The
design for programming flash memory shown in Figure 2
takes advantage of these features. The design uses:

• The five-wire interface of the TAP, which simplifies
the hardware requirements

• The unique configuration of the Intel386 EX embedded
processor in the embedded system to control flash
memory programming

• The advanced programming algorithm of the Intel
28F400BV-T Boot Block flash device

This application note focuses on the 101-pin JTAG imple-
mentation found on the Intel386 EX embedded processor.
Sections 2.1 and 2.2 describe this implementation, while
the features of the Boot Block flash device are described in
section 2.3.

2.1 IEEE 1149.1 - The JTAG Specifi-
cation

The IEEE 1149.1 specification was originally intended to
provide an easy way to verify the functionality and correct
interconnection of both compliant and non-compliant
devices in a printed circuit board design. However, without
the presence of any firmware, the JTAG-compliant Intel386
EX embedded processor can imitate most of the bus signals

AP-720 A

2

by controlling the TAP. This powerful feature can be used to
access all of the peripherals as if an emulator or
programmer were connected instead of the CPU.

The IEEE’s official publication, the IEEE Standard Test
Access Port and Boundary-Scan Architecture, contains a
complete description of the JTAG standard and the
operation of JTAG-compliant devices.

2.1.1 TAP Signal Descriptions

The TAP uses a serial synchronous data exchange protocol
and consists of five signals:

• TDI - Test Data Input - a serial bit stream that goes into
either the JTAG control/command registers or
Boundary Scan Registers (BSR) that control the pin
drivers register on the Intel386 EX processor.

• TDO - Test Data Output - a serial bit stream which
goes to the tester and contains information shifted out
of either the identifier register or the Pin Data Capture
register of the JTAG unit.

• TCK - Test Port Clock - a synchronous clock which
accompanies any data transfers through the JTAG port.
Data on input lines is sampled on the rising edge of the
TCK signal. Data on the output line is sampled on the
falling edge of the TCK signal.

• TMS - Test Mode Select - this signal, used in
conjunction with TDI, controls the state machine which
determines the state of the TAP-related circuitry and
the direction of data streams within the device under
test.

• TRST# - Test Port Reset - an optional signal,
implemented in the Intel386 EX processor, that resets
the TAP state machine to the predetermined initial
state.

2.1.2 JTAG State Machine

The movement of data through the TAP can be controlled
by supplying the proper logic level to the TMS pin at the
rising edge of consecutive TCK cycles. The TAP controller
itself is a finite-state machine that is capable of 16 states.
Each state contains a link in the operation sequence
necessary to manipulate the data moving through the TAP.
This includes applying stimuli to the pins, capturing
incoming data, loading instructions, and shifting data into
and out of the Boundary-Scan Register. Figure 1 shows the
TAP state machine flowchart, and demonstrates the
sequence of inputs on TMS necessary to progress from any
one state to another. Asserting the TRST# pin at any time
will cause the TAP to reset to the Test-Logic-Reset home
state.

A AP-720

3

Figure 1. TAP Controller (Finite State Machine)

A2356-01

Update -
IR

Exit2 -
IR

Pause -
IR

Exit1 -
IR

Shift -
IR

Capture -
IR

Select -
IR - Scan

Update -
DR

Exit2 -
DR

Pause -
DR

Exit1 -
DR

Shift -
DR

Capture -
DR

Select -
DR - Scan

Run - Test/
Idle

Test - Logic
- Reset

1 0

1

1

0

1

0

0

1 0

1

1

0

1

0

0

1

1

00

1

11

0

1

0

0

0

0

1

0

1

2.2 Intel386 EX Embedded Processor
JTAG Test-Logic Unit

The JTAG Test-Logic Unit of the Intel386 EX embedded
processor can control all device pins except those of the
clock, power, ground, and TAP control signals. A boundary-
scan cell resides at each of the 101 controlled device pins.
The cells are connected serially to form the 101 bit
boundary-scan register. Each bit has both a control cell,
which controls the I/O status of the pin, and a data cell,
which holds the logical high or low value to be asserted at
the pin itself. An EXTEST or INTEST instruction, as

shown in Table 1, requires a total of 202 (101 bits x 2 cells)
shifts of data into the TAP.

In addition to the boundary-scan (BOUND) register, the
Intel386 EX processor has an instruction register (IR)
whose instructions are shown in Table 1. These instructions
are used in programming flash memory through the JTAG
port. The bypass register (BYPASS) is also featured on the
processor, but is only used in systems with two or more
JTAG-compliant devices. The identification code
(IDCODE) register is the last one implemented in the
Intel386 EX processor, and is discussed further in Section
2.2.2.

AP-720 A

4

Table 1. Test-Logic Unit Instructions

Mnemonic Opcode 1,2 Description

BYPASS 1111
Bypass on-chip system logic (mandatory instruction).

Used for those components that are not being tested.

EXTEST 0000
Off-chip circuitry test (mandatory instruction).

Used for testing device interconnections on a board.

SAMPRE 0001

Sample pins/preload data (mandatory instruction).

Used for controlling (preload) or observing (sample) the signals at
device pins. This test has no effect on system operation.

IDCODE 0010
ID code test (optional instruction).

Used to identify devices on a board.

INTEST 1001

On-chip system test (optional instruction).

Used for static testing of the internal device logic in a single-step
mode.

HIGHZ 1000

High-impedance/ONCE mode test (optional instruction).

Used to place device pins into their inactive drive states. Allows
external components to drive signals onto connections that the
processor normally drives.

NOTES:

1 The opcode is the sequence of data bits shifted serially into the instruction register (IR) from
the TDI input. The opcodes for EXTEST and BYPASS are mandated by IEEE 1149.1, so
they should be the same for all JTAG-compliant devices. The remaining opcodes are
defined for use on the Intel386 EX embedded processor, so they may vary among devices.

2 All unlisted opcodes are reserved. Use of reserved opcodes could cause the device to enter
reserved factory-test modes.

2.2.1 Boundary Scan Register

The order of the bits contained in the Boundary Scan
Register (BSR) is shown in Table 2. The direction, or
control, bits follow their corresponding data bits in the
chain sequence. For example, Bit 0, M/IO# would be
followed in the chain by its directional bit, which in turn
would be followed by Bit 1, D/C#. It is important to
remember that the boundary scan register is shifted in
serially; when shifting data out onto the pins, the first bit
shifted into the BSR must be the directional bit of D15
(entry number 100 in Table 2). This method ensures that all
data is loaded onto the correct pins at the conclusion of the
202-bit serial data shift.

Although it is not used in the software examples included in
Appendix A, a copy of the BSDL (Boundary-Scan
Description Language) file for the A and B steppings of the
Intel386 EX embedded processor (JTAGBSDL.ZIP) is

located on Intel’s America’s Application Support BBS, at
(916) 356-3600. This file lists:

• The physical pin layout of all pins in the Boundary-
Scan Register

• The valid and reserved JTAG unit opcodes

• The expected contents of the IDCODE register (shown
also in Section 2.2.2) for the Intel386 EX embedded
processor

• A description of the BSR contents

The BSDL file may be incorporated into software which
uses the JTAG port for testing or programming functions.
BSDL is a de-facto standard recently approved by the IEEE
for describing essential features of IEEE 1149.1(b)
compliant devices. A copy of the Intel386 EX embedded
processor BSDL file is shown in Appendix B.

A AP-720

5

Table 2. Boundary-scan Register Bit Assignments

Bit Pin Bit Pin Bit Pin Bit Pin

0 M/IO# 25 A15 50 TMROUT2 75 P2.2

1 D/C# 26 A16/CAS0 51 TMRGATE2 76 P2.3

2 W/R# 27 A17/CAS1 52 INT4/TMRCLK0 77 P2.4

3 READY# 28 A18/CAS2 53 INT5/TMRGATE0 78 DACK0#

4 BS8# 29 A19 54 INT6/TMRCLK1 79 P2.5/RXD0

5 RD# 30 A20 55 INT7/TMRGATE1 80 P2.6/TXD0

6 WR# 31 A21 56 STXCLK 81 P2.7

7 BLE# 32 A22 57 FLT# 82 UCS#

8 BHE# 33 A23 58 P1.0 83 CS6#/REFRESH#

9 ADS# 34 A24 59 P1.1 84 LBA#

10 NA# 35 A25 60 P1.2 85 D0

11 A1 36 SMI# 61 P1.3 86 D1

12 A2 37 P3.0/TMROUT0 62 P1.4 87 D2

13 A3 38 P3.1/TMROUT1 63 P1.5 88 D3

14 A4 39 SRXCLK 64 P1.6/HOLD 89 D4

15 A5 40 SSIORX 65 RESET 90 D5

16 A6 41 SSIOTX 66 P1.7/HLDA 91 D6

17 A7 42 P3.2/INT0 67 DACK1#/TXD1 92 D7

18 A8 43 P3.3/INT1 68 EOP# 93 D8

19 A9 44 P3.4/INT2 69 WDTOUT 94 D9

20 A10 45 P3.5/INT3 70 DRQ0 95 D10

21 A11 46 P3.6/PWRDOWN 71 DRQ1/RXD1 96 D11

22 A12 47 P3.7/SERCLK 72 SMIACT# 97 D12

23 A13 48 PEREQ/TMRCLK2 73 P2.0 98 D13

24 A14 49 NMI 74 P2.1 99 D14

100 D15
NOTES:

1 Bit 0 is closest to TDI; bit 100 is closest to TDO.

2 The boundary-scan chain consists of 101 bits; however, each bit has both a control cell and
a data cell, so an EXTEST or INTEST instruction requires 202 shifts (101 bits × 2 cells).

AP-720 A

6

2.2.2 Identification Code Register

The IDCODE instruction allows the user to determine the
contents of the device’s identification code register. For the
Intel386 EX embedded processor this command should
return one of the values shown in Table 3.

For more information about identification codes, see the
Intel386TM EX Embedded Microprocessor User’s Manual.

2.3 Intel 4 Mbit Boot Block Flash

The number of instructions necessary to program flash
devices is significantly reduced by using an Intel Boot
Block device. In the sample design described in the next
section, the automated Write State Machine (WSM) of the
28F400BV-T flash unit ensures that all algorithms and
timings necessary for erasing and programming the device
are executed automatically, freeing the TAP control
software of additional burdensome I/O cycles and iterative
code. The device also performs its own program and erase
verifications, updating the Status Register (SR) to indicate
the successful completion of operations. These features are
standard with Intel’s Boot Block, FlashFileTM, and
Embedded Flash RAM families, which are available in a
variety of sizes and configurations.

Writing data to Intel’s second-generation flash memories
consists of these steps:

1. The write setup command (40H) is issued to flash
memory.

2. This is followed by a second write specifying the
address and data for the location to be written.

3. The data and address are latched internally on the rising
edge of the WE# strobe, which may be issued by one of
a variety of sources.

Table 3. Device Identification Codes

Step VCC IDCODE

A 5 V 0027 0013H

B 5 V 0027 0013H

C 5 V 2027 0013H

C 3 V 2827 0013H

At this point, the WSM takes over, writing the results of the
verification into the status register. Since data access is
much slower than the typical programming time, the
contents of the SR need not be checked after each write.
Instead, writes are repeated sequentially for all locations to
be programmed, with the SR verified when the block
programming is completed. After the device is
programmed, the data may be read back sequentially with
RD# held constantly low, and the contents may be verified
by comparison against the source code.

The static nature of the Intel386 EX embedded processor’s
Boundary Scan Register outputs combined with the high
speed of the flash device ensures that timing issues are a
minimal problem. In fact, a 16-bit word may be written to
the flash device in only a single cycle of the boundary scan
register. This is accomplished by using an additional output
pin of the controlling PC’s parallel port connected to WE#
to clock the data and address into the chip. By doing so, as
is discussed in Section 4.0, PERFORMANCE ANALYSIS
AND CONSIDERATIONS, even a simple design can
achieve throughput levels of more than 1 Kbyte per second
through the serial BSR of the Test Access Port.

3.0 SAMPLE DESIGN

3.1 TAP Hardware Interface

Figure 2 illustrates a straightforward design that uses a
standard parallel port to communicate with the TAP of the
Intel386TM EX Embedded Microprocessor Evaluation
Board. This interface is typical of any design based on the
Intel386 EX embedded processor, and requires only a
CMOS buffer to protect the TAP pins and translate the
printer port signals to the CMOS levels required for the
TAP. This assembly can be built onto a simple cable or card
that plugs into the Intel386 EX Embedded Microprocessor
Evaluation Board Option Header. It receives power and
ground signals from the Evaluation Board, which must be
powered on during operation of the TAP programmer. The
majority of the signal control is done by software routines
which read and write data to and from the BSR.

A AP-720

7

Figure 2. TAP Parallel Port Interface

D
a

te
:

Ju
ly

 3
1,

 1
99

5
S

he
e

t

 1
of

 1

S
iz

e
D

oc
u

m
en

t N
u

m
be

r
R

E
V

A
1.

0

T
itl

e
E

V
38

6E
X

 -
 J

T
A

G
 I

N
T

E
R

F
A

C
E

 B
O

A
R

D

C
H

A
N

D
LE

R
, A

Z
 8

52
26

50
0

0
W

.
C

H
A

N
D

LE
R

 B
O

U
LE

V
A

R
D

IN
T

E
L

 C
O

R
P

O
R

A
T

IO
N

D
R

A
M

 W
E

1-
2

=
 D

R
A

M
 W

E
#

3-
4

=
 P

LD
 W

E
#

H
E

A
D

E
R

 3
X

2

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31
32

33
34

35
36

37
38

39
40

41
42

43
44

45
46

47
48

49
50

51
52

53
54

55
56

57
58

59
60

61
62

63
64

JP
7

C
O

N
N

E
C

T
O

R

H
E

A
D

E
R

 3
2

X
2

13
25

12
24

11
23

10
22

 9
21

 8
20

 7
19

 6
18

 5
17

 4 16 3
15

 2
14

 1

P
ar

al
le

l P
or

t C
on

n

C
O

N
N

E
C

T
O

R
 D

B
25

T
D

O
_P

R
T

A

C
M

_C
H

K

C
M

_C
H

K

T
D

I_
P

R
T

Y

1A
1

 2

1A
2

 4

1A
3

 6

1A
4

 8

2A
1

 1
1

2A
2

 1
3

2A
3

 1
5

2A
4

 1
7

1G
 1

2G
 1

9

1Y
1

18

1Y
2

16

1Y
3

14

1Y
4

12

2Y
1

 9

2Y
2

 7

2Y
3

 5

2Y
4

 3

B
U

F
F

E
R

74
H

C
T

24
4

T
D

O
_P

R
T

A
T

M
S

_A
R

E
S

E
T

_A
#

T
C

K
_A

T
D

O

T
D

I
T

M
S

T
R

S
T

#
T

C
K

T
D

I_
P

R
T

Y

D
E

C
O

U
P

L
IN

G
C

A
P

 N
P

.4
7

u
F

16
V

V
C

C

G
N

D

V
C

C

T
R

S
T

#
T

C
K

T
D

I

T
M

S
T

D
O

G
N

D

T
C

K
_A

T
M

S
_A

R
E

S
E

T
_A

#

N
O

T
E

S
:

1)
T

hi
s

ad
di

tio
na

l c
irc

ui
t b

o
ar

d
 s

ho
u

ld
 b

e
 p

la
ce

d
in

 th
e

JP
7

co
nn

ec
tio

n
of

 th
e

In
te

l3
86

T
M

 E
X

E

va
lu

at
io

n
B

oa
rd

 to
 fa

ci
lit

at
e

th
e

pr
og

ra
m

m
in

g
of

 th
e

B
oo

t B
lo

ck
 fl

as
h

th
ro

ug
h

th
e

ch
ip

’s

JT
A

G
 p

or
t.

2)
F

or
 p

ro
gr

am
m

in
g

to
 c

om
pl

et
e

su
cc

es
sf

ul
ly

, t
he

 o
ut

pu
t t

ra
ce

 o
n

p
in

 2
0

of
 th

e
U

16
 P

LD
 o

n
th

e
E

va
lu

a
tio

n
B

oa
rd

 m
us

t
be

 c
ut

 b
et

w
e

en
 th

e
 P

LD
 a

nd
 th

e
 fl

as
h

de
vi

ce
.

A
dd

iti
o

na
lly

,
P

in
 8

 o
f J

P
7

sh
ou

ld
 b

e
w

ir
ed

 to
 U

S
4,

 P
in

 4
7

(W
E

on

 th
e

D
R

A
M

 s
oc

ke
t)

. P
in

 1
0

o
f J

P
7

sh
ou

ld
 b

e
w

ire
d

to
 U

1
6,

 P
in

 2
0

(c
al

le
d

F
LS

H
_W

E

on
 th

e
P

LD
).

 P
in

 4
 o

f
U

7
sh

ou
ld

 b
e

w
ire

d
to

 U
S

3
, P

in
 4

3
(W

E

o
n

th
e

fla
sh

 d
ev

ic
e)

. T
hi

s
w

ill
 n

ot
 a

ffe
ct

 th
e

o
pe

ra
tio

n
of

 th
e

E
va

lu
at

io
n

B
o

ar
d

 if
 p

in
s

3-
4

of
 J

M
P

_W
E

ar

e
ju

m
pe

re
d

.

S
T

R
O

B
E

#

S
T

R
O

B
E

#

F
LS

H
_W

E
V
C

C

S
T

R
O

B
E

#

T
D

O
_P

R
T

A
S

T
R

O
B

E
#

T
M

S
_A

T
C

K
_A

R
N

_P
U

LL
U

P

 2
 1

 6
 5

 4
 3

 8
 7

S
IP

_4

 3
30

_O
H

M

5-
6

=
 S

T
R

O
B

E

W
E

#

P
LD

 W
E

#
1 3 5

2 4 6

JM
P

_W
E

#

A
lth

ou
gh

 In
te

l h
as

 v
er

ifi
ed

 th
is

 d
es

ig
n

to
 b

e
fu

nc
tio

na
l,

In
te

l
as

su
m

es
 n

o
re

sp
on

si
bi

lit
y

fo
r

an
y

er
ro

rs
 th

at
 m

ay
 a

pp
ea

r
in

 th
e

de
si

gn
. I

nt
el

 r
es

er
ve

s
th

e
rig

ht
 to

 m
od

ify
 th

is
 d

es
ig

n
w

ith
ou

t n
ot

ic
e.

S
T

R
O

B
E

#

AP-720 A

8

3.2 JTAG Software Interface

This section details the operation of the various software
routines that use the Test Access Port to program data into
the Boot Block flash. The source code for the executable
program TAPLOADR.EXE, which contains both inline
assembly routines as well as C language functions, is shown
in Appendix A. The software demonstrates how to:

• Configure and modify the status of pins for data input
and output

• Shift in the values necessary to perform I/O to the flash
device

• Perform operations such as status checks and data I/O

3.2.1 Hardware Considerations

The high-level routines used in programming data through
the TAP are device-dependent because they assume a
particular device configuration on the board as well as a
predetermined system interface. In the example, the JTAG
chain contains only a single IEEE 1149.1 compliant device,
the Intel386 EX embedded processor. If the JTAG chain
consisted of several devices connected in series, the
routines would need to control the whole chain and place
any other devices into the BYPASS mode. The routines in
the example assume only a single device with separate RD#
and WR# strobes generated by the CPU. The WR# signal
may be enabled externally to improve performance; this is
discussed in Section 4.0, PERFORMANCE ANALYSIS
AND CONSIDERATIONS.

Several preparations must be made before the flash memory
can be programmed. On the Evaluation Board, JP12 must
be installed and R12 removed. Jumpering pins 1 and 2 of
JP12 enables the PWD signal (pin 44) of the 28F400BV-T
flash device, which provides programming voltage for
block erases and writes. When programming the flash, it is
also critical to enable VPP (pin 1) by setting Port 1.5 (pin
107) of the Intel386 EX embedded processor on the
Evaluation Board used in the example.

In the example, UCS# is used as the chip select (CS#) for
the flash device; it is LOW for any address that is accessed.
The example also implies static behavior of the bus;
therefore, the connection of flash chips to the CPU should
be independent of any clocks. If any buffers on the busses
are required in the design, their direction and enable signals
should be static. Take care to ensure that all flash control
signals are clock-independent. Revision 2.1 of the
EV386EX Intel386TM EX Embedded Microprocessor

Evaluation Board requires that a change be made to
temporarily disconnect the output of Pin 20 of the U16 PLD
(FLSH_WE#) so that the flash’s WE# signal may be
controlled by an external, static, and clock-independent
source. Examples are shown in Figure 2 for Parallel Port
and TAP control of the WE# signal. Making the changes
described in the figure notes enables the correct operation
of the programming functions and eliminates any
contention for control of the devices and their signals.

Future steppings of the Intel386 EX embedded processor
remove the need for PLD control of the flash’s WE# signal
by correcting errata #29 of the Intel386 EX embedded
processor errata list. This allows a glueless flash interface to
be used in some designs and eliminates the need for modifi-
cations to the PLD when implementing the programming of
the flash memory through the TAP. When cutting the trace
on the FLSH_WE# signal, however, care must be taken to
jumper pins 3-4 on the JTAG interface card so that correct
operation of the EV386EX evaluation board is retained.

Although two examples are given for resetting the JTAG
unit of the Intel386 EX embedded processor, it is only
necessary to use one of the provided means to return the
TAP state machine to Test-Logic-Reset. If the chosen
implementation uses the Restore_Idle function rather than
the Reset_JTAG routine, it is advisable to tie an inverted
CPU Reset signal to the TRST# input of the processor. This
guarantees that the TAP relinquishes control of all the
controlled CPU pins upon a system reset. If the
Reset_JTAG function is used, care must be taken to reset
the system immediately after TRST# is asserted.

3.2.2 Assembly Language Routines

The heart of the software that allows you to program flash
through the JTAG port is contained in the assembly routines
which control the JTAG unit of the Intel386 EX embedded
processor via the parallel port of a PC. These routines have
been implemented as inline assembly code to simplify the
development process and the clarity of the software. They
use a set of bit masks and variables shown in the first
section of Appendix A under the heading “Assembly
Language Variables.” A description of each function is
shown below:

• Reset_JTAG - Resets the TAP to the Test-Logic-Reset
state by toggling the TRST# signal. This signal is
optional in IEEE 1149.1, but has been provided on the
Intel386 EX embedded processor. Alternately, the same

A AP-720

9

function is provided by five consecutive TCK periods
with TMS held high. See Restore_Idle (below) for
more details.

• Restore_Idle - Resets the TAP to the Test-Logic-Reset
state by transitioning through the state machine. TMS
is held high for five consecutive TCK clock periods.
This is in accordance with the IEEE 1149.1 specifi-
cation.

• TMS_High - Provides a vehicle for progression
through the state machine with TMS held high for a
single TCK clock period. Used when shifting data into
and out of the TAP.

• TMS_Low - Provides a vehicle for progression
through the state machine with TMS held low for a
single TCK clock period. Used when shifting data into
and out of the TAP.

• Shift_Data_Array - Shifts a data string into the TAP
while copying the data in the TAP into the place of the
incoming data. This function is called when the TAP
state machine is in the Select_DR_Scan state.

• Shift_Data_Array_IN - Shifts a data string into the
TAP and does not copy any data from the TAP in the
place of the incoming data. This function is called
when the TAP state machine is in the Select_DR_Scan
state.

• Strobe_Data_In - Pulses the STROBE# line of the
PC’s parallel port. This function is used only when
STROBE# is connected to the WE# line of the flash.

3.2.3 “C” Routines

Appendix A contains a number of “C” language functions
that make the programming of flash modular and easy to
implement. Many of them are called from the “Main”
function of TAPLOADR.EXE, but others are used to move
data back and forth into the TAP by means that would be
complicated by using assembly language programming.
The program was compiled under Microsoft* Visual C++
1.50. A list of the functions, their dependencies, and a brief
description of their operation is given below.

• Send_Instruction - Sends a JTAG instruction as a
string into the TAP. Replaces the original string with
the data that is shifted out on TDO.

• Send_Instruction_IN - Sends a JTAG instruction as a
string into the TAP. Does not replace the original string
with the data that is shifted out on TDO.

• Send_Data - Sends a JTAG data string into the TAP.
Replaces the original string with the data that is shifted
out on TDO.

• Send_Data_IN - Sends a JTAG data string into the
TAP. Does not replace the original string with the data
that is shifted out on TDO.

• Flip _ID_String - Flips the JTAG unit ID string within
its own array. This needs to be done in order to reverse
the string which is read in backwards, least significant
bit first. This allows for verification of the data that is
read against the value shown in the Intel386TM EX
Embedded Microprocessor User’s Manual, most
significant bit first.

• Get_JTAG_Device_ID - Retrieves the JTAG device
ID from the processor. Displays the results and the
expected value.

• Fill_JTAG - Initializes the values in the 202 bit JTAG
BSR array for a standard configuration. Sets up input
and output pins and values for the control pins in the
BSR. Sets the direction bits of the unused pins to a
value of “0” which makes them inputs. This routine is
unique to the Intel386 EX embedded processor and
must be configured differently for other devices.

• Set_Data - Decodes a 16-bit data word onto the D0
through D15 data lines in the BSR array. Sets the data
line directional bits to a value of “1” which makes
them into outputs. Used when writing data to the flash.

• Get_Data - Configures the data lines as inputs,
allowing data to be output from the flash and read into
the BSR array. Used when reading data back from the
flash.

• Parse_Data - Reads the data from the data lines in the
BSR array and parses it into a 16-bit data word. Used
when reading data back from the flash.

• Set_Address - Decodes an address onto the A1
through A25 data lines in the BSR array. Sets the
directional bits for the address lines to a value of “1”
which makes them into outputs. Used for both reads
and writes to and from the flash.

• Flash_Read - Reads a 16-bit data word from the flash
device at the specified address. Used for verification of
data and status checks.

• Flash_Write - Writes a 16-bit data word to the flash
device at the specified address. Used for data
programming and status checks. Optional section
within this procedure may be chosen depending on

AP-720 A

10

chosen method of WE# hardware control. Only one
type of WE# signal enabling procedure may be used at
a time.

• Input_File_Name_OK - Verifies that the input file is a
file that can be read. When this function does not return
a value of TRUE, the program displays an error
message and prompts the user to try executing the
program again. If the file is valid, the program executes
normally.

• Get_Flash_Device_ID - Retrieves the flash device ID
from the Intel Boot Block flash Device. Displays the
results and the expected value.

• Check_Flash_Status - Clears the flash status registers
and sends a Read Status command to the device. The
results are read back and displayed along with the
expected values for a properly functioning device.

• Erase_Flash - Erases each block within the Intel Boot
Block flash device. An address within each block is
stored in an array in this function, and the function
loops for a specified number of blocks, seven in this
case. The function may be altered to erase only the
Boot Block or selected blocks within the device.

• Program_Flash_Data - Outputs data from the
specified binary input file to the flash device. Data is
read in as 8-bit characters and is merged into 16-bit
words which are then written to the Flash device. Status
checks are not performed after each write, because
doing so slows performance. The function displays the
status of a successful programming operation and
notifies the user if the input file has been closed
successfully.

• Read_Flash_Data - Reads back the data that has been
written to the flash into the file VERIFY.BIN. A file
comparison may be done to check the correct
programming of flash data. This is unnecessary in most
real applications, but is marginally faster than checking
status after each word is programmed.

3.2.4 Program Operation and Options

TAPLOADR.EXE operations are controlled from the
program’s “Main” function. The program does not execute
until it is given a valid input file name. Table 4 lists the
functions which verify, write, and then read back the data in
the file that is written to the flash device.

Table 4. TAPLOADER.EXE Order of Execution

Input_File_Name_OK (input_file) // Checks input file name

Fill_JTAG(PinState); // Initialization string

Reset_JTAG(); // Reset the JTAG unit

Restore_Idle(); // Used to reset JTAG state machine

Get_JTAG_Device_ID(); // Get ID - see 386EX manual for code

Get_Flash_Device_ID(); // Get ID - see flash manual

Check_Flash_Status(); // Check status register example

Erase_Flash(); // Erases the entire flash chip

i = Program_Flash_Data(); // Opens file and programs flash data

Check_Flash_Status(); // Checks status before continuing

Read_FLASH_Data(“verify.bin”,
data_start_address, i);

// Copy contents to file

11

A AP-720

The program displays status check messages throughout its
operation. It is important to recognize that some operations,
especially when programming large amounts of data, may
take from a few seconds to a few minutes to complete. A
block erase operation normally requires approximately 0.5
seconds per block, or about 4 seconds per flash device.
Writing data may take from just a few seconds to over 30
minutes, depending on the size of the input file and the
methods used for verifying data programming and enabling
WE# on the flash chip. These issues are discussed in the
next section.

4.0 PERFORMANCE ANALYSIS AND
CONSIDERATIONS

A number of factors can affect the performance, specifically
the throughput levels, of any programming device that uses

the JTAG port. Among these, the most critical are the
methods used to write the data into the flash device and
verify that it has been successfully stored at the correct
location.

As was mentioned earlier, reducing the number of status
checks performed while programming can greatly reduce
the time required to program data into flash. The relatively
slow operation of the parallel port and TAP combination
ensures that read and write operations do not interfere with
those that precede them. Checking status bits only at the end
of blocks of writes can reduce programming time by as
much as one half. Table 5 shows a comparison of typical
timings measured while loading data into the flash device
found on the Intel386TM EX Embedded Microprocessor
Evaluation Board.

Table 5. TAP Flash Programming Sample Timings

Size of Operation Type of Access Status Check FLSH_WE# Type Seconds Seconds/Kbyte

32 Kbyte Write Yes WE# 180 5.62

32 Kbyte Read N/A WE# 40 1.25

32 Kbyte Write No WE# 100 3.12

32 Kbyte Read N/A WE# 40 1.25

32 Kbyte Write No STROBE# 45 1.41

32 Kbyte Read N/A STROBE# 40 1.25

512 Kbyte Write Yes WE# 2940 5.74

512 Kbyte Read N/A WE# 660 1.28

512 Kbyte Write No WE# 1620 3.16

512 Kbyte Read N/A WE# 660 1.28

512 Kbyte Write No STROBE# 555 1.08

512 Kbyte Read N/A STROBE# 590 1.15

Table 5 also illustrates how the use of a WE# generated by
the STROBE# line of a typical parallel port may expedite
the delivery of data through the TAP. Using this method
allows writes to complete in a single cycle of the TAP,
rather than the normal three cycles that are required when
strobing the WE# signal from the TAP. As shown in
Appendix A, the data and address are placed on the bus in a
single cycle when using STROBE# as WE#. They are then
clocked into the flash device by toggling the STROBE# line
externally. In the latter case, however, three complete shifts
of the BSR data must be performed in order to send the data

and address and simultaneously toggle the WE# line in a
similar high-low-high pattern. Reductions in write cycle
time of close to two thirds are expected when using the first
method. The unused data signals of the parallel port may
also be used to control other useful signals such as RD#, or
to monitor the status of control lines on the system under
test.

It is worth mentioning that several companies currently
offer JTAG port interface cards that use a standard ISA bus
interface to communicate with one or more Test Access

AP-720 A

12

Ports. These cards can vastly improve the data transfer rates
of about 0.5 Kbytes per second that are typical of a parallel
port programmer. Although this rate is comparable to that of
a typical EPROM programmer, TMS periods on the order of
a few microseconds are less than ideal. Typical data rates of
8 Mbits per second may be achieved by a simple card which
uses RAM to send and read data patterns from the JTAG
port. Since the bus signal emulation requires only the
toggling of a few signals out of all that are within the BSR,
the card stores the data to be written and transfers it to the
TAP in a rapid manner. Most hardware vendors provide a
library of software to assist the programmer in writing code
to interface with such cards. Even the simplest combination
of hardware and software can be a valuable tool in
programming and testing new code in flash.

5.0 CONCLUSION

The Intel386 EX processor provides a powerful means of
programming onboard flash devices to meet the needs of
Just-In-Time manufacturing systems. Unprogrammed
devices may now be soldered directly onto PCB’s, allowing
for concurrent software and hardware development
processes as well as last minute changes in BIOS code

without the loss of valuable time or inventory. Accessing
these devices via the chip’s IEEE 1149.1-compliant Test
Access Port provides an inexpensive, versatile, and reliable
tool that functions far beyond the realms of debug and test.
If shock-tolerance and reduction of form-factor are primary
design concerns, using the JTAG port is sure to be an
important tool for in-circuit device reprogramming and
reconfiguration. The parallel port of a standard PC becomes
a flexible tool in this case, and may be used to generate TAP
signals for either lab or low-volume production. With a
high-performance solution based on a simple TAP
controller card in a PC, programming performance signifi-
cantly improves without the purchase of costly test
equipment.

6.0 RELATED INFORMATION

This application note is one of the many sources of
information available regarding designing with the Intel386
EX embedded processor. Table 6 shows other useful
documents and their Intel order numbers.

Table 6. Related Intel Documents

Publication Title Order
Number

Intel386TM EX Embedded Microprocessor datasheet 272420

Intel386TM EX Embedded Microprocessor User’s Manual 272485

Intel386TM SX Embedded Microprocessor datasheet 240187

Intel386TM SX Embedded Microprocessor Programmer’s Reference Manual 240331

Intel386TM SX Embedded Microprocessor Hardware Reference Manual 240332

186 Development Tools Handbook 272326

Intel386TM EX Embedded Microprocessor Evaluation Board Manual 272525

Buyer’s Guide for the Intel386TM EX Embedded Processor Family 272520

Packaging 240800

1995 Flash Memory Databook 210830

A AP-720

13

To receive these documents or any other available Intel
literature, contact:

Intel Corporation
Literature Sales
P.O. Box 7641
Mt. Prospect IL 60056-7641
1-800-879-4683

To receive files that contain the source code, executable
programs, and schematics for this application of flash
programming through the TAP, contact:

Intel Corporation
America’s Application Support BBS
916-356-3600

Additional information on the IEEE 1149.1/1a specification
may be found in the official IEEE Standards document
IEEE Standard Test Access Port and Boundary-Scan Archi-
tecture. This publication is sponsored by the Test
Technology Standards Committee of the IEEE Computer
Society and is available from:

Institute of Electrical and Electronics Engineers, Inc.
345 East 47th Street
New York NY 10017

A AP-720

A-1

APPENDIX A
PROGRAM SOURCE CODE

The following source code was written in Microsoft Visual C++ version 1.5 and has been tested using the aforementioned
hardware interface on a Intel386TM EX Embedded Processor Evaluation Board. It was compiled and linked into the file
TAPLOADR.EXE, which is available on Intel’s America’s Application Support BBS in the zipped file TAPLOADR.ZIP.

Table A-1. Program Source Code (Sheet 1 of 15)
/***************************** TAPLOADR.CPP *********************************

*

* Program Name: TAPLOADR.CPP

*

* Version: 1.0

*

* Date: July 18, 1995

*

* Author: Daniel S. Hays

* 386 Applications Engineer

*

* References: Excerpts of code taken from modules of the article

* "Beyond the Myth of JTAG Boundary Scan Port" by Dmitrii

* Loukianov, Intel Corp., 1995.

*

* Program Spec: This program will take an input flash file residing on a PC

* and program it into the boot block flash of the 386EX

* Evaluation Board utilizing the JTAG unit onboard the 386EX

* embedded processor. It will also erase the entire FLASH

* chip beforehand, including the boot block area, if

* enabled as described in the requirements section below.

*

* Requirements: In addition to the eval board itself, it is required that

* the user has a JTAG interface board plugged into both the

* evaluation board's expansion bus slot and the host PC's

* parallel port. The U16 PLD chip must be updated in order to

* disable the FLASH_WE# signal, and a jumper must be installed

* on pins 1-2 of Jumper J12, which is not normally populated

* on the standard eval board.

*

* *** Note: The power supply for the 386EX eval board must be

* ON in order for successful programming of the flash to take

* place. The program implies that UCS is the CS# pin for flash

* memory being programmed. UCS is set LOW for any address!

*

* The user must also know the location and name of the input

* data file in .BIN format, as well as the starting location

* in FLASH memory that the file is to be located at.

*

* Disclaimer: Information in this document is provided 'as is' solely to

* enable use of Intel products. Intel assumes no liability

* whatsoever, including infringement of any patent or

* copyright, concerning the included software. Intel

* Corporation makes no warranty for the use of this software

* and assumes no responsibility for any errors which may

* appear in this document nor does it make a commitment to

* update the information contained herein.

*

* Copyright (C) Intel Corporation 1995

* All Rights Reserved.

AP-720 A

A-2

*

************************* GLOBAL DECLARATIONS **************************/

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include <conio.h>

/**** Definitions of JTAG BSR pins for sequence for Intel 386 EX CPU ****/

/***** Note: MIO shifted out LAST, D15 - first! *************************/

#define D15 0

#define D14 1

#define D13 2

#define D12 3

#define D11 4

#define D10 5

#define D9 6

#define D8 7

#define D7 8

#define D6 9

#define D5 10

#define D4 11

#define D3 12

#define D2 13

#define D1 14

#define D0 15

#define LBA 16

#define CS6 17

#define UCS 18

#define P27 19

#define P26 20

#define P25 21

#define DACK0 22

#define P24 23

#define P23 24

#define P22 25

#define P21 26

#define P20 27

#define SMIACT 28

#define DRQ1 29

#define DRQ0 30

#define WDTOUT 31

#define EOP 32

#define DACK1 33

#define P17 34

#define RESET 35

#define P16 36

#define P15 37

#define P14 38

#define P13 39

#define P12 40

#define P11 41

#define P10 42

#define FLT 43

#define STXCLK 44

#define INT7 45

#define INT6 46

#define INT5 47

#define INT4 48

#define TMRGATE2 49

#define TMROUT2 50

Table A-1. Program Source Code (Sheet 2 of 15)

A AP-720

A-3

#define NMI 51

#define PEREQ 52

#define P37 53

#define P36 54

#define P35 55

#define P34 56

#define P33 57

#define P32 58

#define SSIOTX 59

#define SSIORX 60

#define SRXCLK 61

#define P31 62

#define P30 63

#define SMI 64

#define A25 65

#define A24 66

#define A23 67

#define A22 68

#define A21 69

#define A20 70

#define A19 71

#define A18 72

#define A17 73

#define A16 74

#define A15 75

#define A14 76

#define A13 77

#define A12 78

#define A11 79

#define A10 80

#define A9 81

#define A8 82

#define A7 83

#define A6 84

#define A5 85

#define A4 86

#define A3 87

#define A2 88

#define A1 89

#define NA 90

#define ADS 91

#define BHE 92

#define BLE 93

#define WR 94

#define RD 95

#define BS8 96

#define READY 97

#define WRD 98

#define DC 99

#define MIO 100

#define TRUE 1

#define FALSE 0

typedef unsigned int word; // 16 Bit word

typedef unsigned char byte; // 8 Bit Byte

typedef char *Pchar;

typedef Pchar PJTAGdata; // JTAG Data array / null term string

const word BSR_Length=202; // # bits in JTAG BSR string 101x2

const word ID_String_Length=32; // # bits in JTAG CPU ID String

unsigned long int A; // Stores address data

Table A-1. Program Source Code (Sheet 3 of 15)

AP-720 A

A-4

unsigned long int i; // Stores index value

unsigned long int data_start_address; // Holds starting address of program

word RX; // Stores register data

word new_word; // Holds word to be written to FLASH

word high_part; // Temp Holder for upper part of word

char PinState[BSR_Length]; // Holds Pin Data to move in and out

char input_file[80]; // Holds name of input file

int c; // Holds character being worked with

FILE *in; // Points to input file location

/****** JTAG1149 Commands for Intel386EX Embedded Processor *************/

char *BYPASS ="1111"; // Use BYPASS register in data path

char *EXTEST ="0000"; // External Test Mode

char *SAMPLE ="1000"; // Sample/Preload Instruction

char *IDCODE ="0100"; // Read ID CODE from the chip

char *INTEST ="1001"; // On-chip System Test

char *HIGHZ ="0001"; // Place device into Hi-Z mode

/******************* Assembly language variables ************************/

#define TCK 1; // Bit 0 is TCK output

#define TMS 2; // Bit 1 is TMS output

#define TCKTMS 3; // Bit 0+1

#define TDI 0x40; // Bit 6 is TDI output

#define notTCKTMS 0xFC; // Bit 0+1

#define TDITMS 0x42; // Bit TDI+TMS

#define TRST 4; // JTAG+2

#define TDO 0x80; // JTAG+1, bit is inverted!

static word JTAG=0x378; // LPT1 Data Address Default

const word JTAGI=JTAG+1; // Contains circuit input

const word JTAGR=JTAG+2; // Reset bit is here

/**/

/************** INLINE ASSEMBLER FUNCTIONS FOR JTAG I/O *******************/

/**/

/**************** Assembly function to reset the JTAG unit ****************/

void far Reset_JTAG() /** Reset TAP logic by optional TRST# signal **/

{

 _asm

 {

 mov dx,JTAG

 mov al,0 // +TDI

 out dx,al

 mov dx,JTAGR

 mov al,0 // TRST# LOW

 out dx,al

 mov dx,JTAGR

 mov al,TRST // TRST# HIGH

 out dx,al

 }

}

/*** Assembly function to go into Run_Test_Idle state from unknown state **/

void far Restore_Idle () /** Restore Test_Logic_Reset state by 5 TCK's **/

{ /** Goes into TLR state from any **/

 /** unknown state of the JTAG controller **/

 _asm

 {

Table A-1. Program Source Code (Sheet 4 of 15)

A AP-720

A-5

 mov cx,5

 mov dx,JTAG

 FiveTimes:

 mov al,TMS // TMS HIGH

 out dx,al // Set TMS/TDI

 or al,TCK

 out dx,al // TCK High

 xor al,TCK // TCK Low

 out dx,al

 loop FiveTimes

 }

}

/********* Assembly function to do one transition with TMS High ***********/

void near TMS_High () /** One transition with TMS High **/

{

 _asm

 {

 mov dx,JTAG

 mov al,TMS // Sets TMS high

 out dx,al // Set TMS/TDI

 or al,TCK

 out dx,al // TCK High

 xor al,TCK // TCK Low

 out dx,al

 }

}

/********* Assembly function to do one transition with TMS Low ************/

void near TMS_Low () /** One transition with TMS Low **/

{

 __asm

 {

 mov dx,JTAG

 mov al,0 // Set TMS Low

 out dx,al // Set TMS/TDI

 or al,TCK

 out dx,al // TCK High

 xor al,TCK // TCK Low

 out dx,al

 }

}

/***** Assembly function to shift data into JTAG port while reading *****/

void near Shift_Data_Array(unsigned S, char far *D)

{

 /** Shifts data String into JTAG port while reading data **/

 /** from JTAG port back into D, **/

 /** The procedure should be called when JTAG controller **/

 /** is in the SelectDRScan state **/

 _asm

 {

 mov dx,JTAG

 push es

 push di

 les di, D // Get array pointer

 cld

 xor ax,ax

 mov ax, S // Get Size

 dec ax

Table A-1. Program Source Code (Sheet 5 of 15)

AP-720 A

A-6

 mov cx,ax

 jz LastClock3

 I_Shift3:

 mov al, byte ptr es:[di]

 shl al,6

 and al, notTCKTMS // Clear TCK and TMS bits

 out dx,al // Put first data bit

 or al,TCK // Set TCK high

 out dx,al // Shift in first data bit

 inc dx

 // Sample first data bit

 in al,dx

 and al,80h

 mov al,'1'

 je Ex_1

 mov al,'0'

 ex_1:

 stosb

 dec dx

 loop I_Shift3

 LastClock3:

 mov al, byte ptr es:[di]

 shl al,6

 and al, notTCKTMS

 or ax, TMS // Set TMS bit

 out dx,al // Put last data bit

 or al,TCK // Set TCK high

 out dx,al // Shift in first data bit

 inc dx

 // Sample first data bit

 in al,dx

 and al,80h

 mov al,'1'

 je Ex_2

 mov al,'0'

 ex_2:

 stosb

 dec dx

 mov al,TDITMS // Leave TCK pin Low

 out dx,al

 pop di

 pop es

 }

}

/*** Assembly function to shift data into JTAG port while not reading ***/

void near Shift_Data_Array_IN(unsigned S, char far *D)

{

 /** Shifts data String into JTAG port WITHOUT reading data **/

 /** from JTAG port back into D. **/

 /** The procedure should be called when JTAG controller is in the **/

 /** SelectDRScan state. **/

Table A-1. Program Source Code (Sheet 6 of 15)

A AP-720

A-7

 _asm

 {

 mov dx,JTAG

 push es

 push di

 les di, D // Get string

 cld

 xor ax,ax

 mov ax, S ; Get Size

 dec ax

 mov cx,ax

 jz LastClock4

 I_Shift4:

 mov al, byte ptr es:[di]

 shl al,6

 and al, notTCKTMS

 out dx,al // Put first data bit

 or al,TCK // Set TCK high

 out dx,al // Shift in first data bit

 inc di // Update pointer

 loop I_Shift4

 LastClock4:

 mov al, byte ptr es:[di]

 shl al,6

 and al, notTCKTMS

 or al, TMS

 out dx,al // Put last data bit

 or al,TCK // Set TCK high

 out dx,al // Shift in last data bit

 mov al,TDITMS // Leave TCK pin Low!

 out dx,al

 pop di

 pop es

 }

}

/********* Assembly function to pulse STROBE line on parallel ports ******/

void far Strobe_Data_In ()

{

 _asm

 {

 push dx

 mov dx,JTAGR

 mov al,1+TRST // Sets STROBE# bit low for WE# use

 out dx,al

 mov al,TRST // Returns STROBE# without RESET#

 out dx,al

 pop dx

 }

}

/**/

/******************** C++ FUNCTIONS FOR JTAG PROGRAMMING ******************/

/**/

/************** Function to send instruction to JTAG *********************/

void Send_Instruction (unsigned S, char far *D)

 /* Send instruction string into JTAG port, replace */

Table A-1. Program Source Code (Sheet 7 of 15)

AP-720 A

A-8

 /* the original string with the data that comes out TDO */

{

 TMS_Low; // Go to Run_Test_Idle

 TMS_Low; // Go to Run_Test_Idle

 TMS_High; // Go to Select_DR_Scan

 TMS_High; // Go to Select_IR_Scan

 TMS_Low; // Go to Capture_IR

 TMS_Low; // Go to Shift_IR

 Shift_Data_Array(S,D);

 TMS_High; // Update_IR, new instr. in effect

 TMS_Low; // Run_Test_Idle

}

/******** Function to send instruction into JTAG port, do not read TDO ***/

void Send_Instruction_IN (unsigned S, char far *D)

{

 TMS_Low(); // Go to Run_Test_Idle

 TMS_Low(); // Go to Run_Test_Idle

 TMS_High(); // Go To Select_DR_Scan

 TMS_High(); // Go To Select_IR_Scan

 TMS_Low(); // Go to Capture_IR

 TMS_Low(); // Go to Shift_IR }

 Shift_Data_Array_IN(S,D);//

 TMS_High(); // Update_IR, new instr. in effect

 TMS_Low(); // Run_Test_Idle

}

/**** Function to send data string into JTAG port + replace original *****/

void Send_Data (unsigned S, char far *D)

 /* Send data string into JTAG port */

 /* replace the original string with the data that comes out TDO */

{

 TMS_Low(); // Go to Run_Test_Idle

 TMS_Low(); // Go to Run_Test_Idle

 TMS_High(); // Go To Select_DR_Scan

 TMS_Low(); // Go to Capture_DR

 TMS_Low(); // Go to Shift_DR

 Shift_Data_Array(S,D);

 TMS_High(); // Update_IR, new data is in effect

 TMS_Low(); // Run_Test_Idle

}

/**** Function to send data string into JTAG port w/o replacing orig. ****/

void far Send_Data_IN (unsigned S, char far *D)

 /* Send data string into JTAG port, */

 /* The original data is not overwritten */

{

 TMS_Low(); // Go to Run_Test_Idle

 TMS_Low(); // Go to Run_Test_Idle

 TMS_High(); // Go To Select_DR_Scan

 TMS_Low(); // Go to Capture_DR

 TMS_Low(); // Go to Shift_DR

 Shift_Data_Array_IN(S,D);

 TMS_High(); // Update_IR, new data is in effect

 TMS_Low(); // Run_Test_Idle

}

/*************** Function to invert a data string so MSB is first *********/

void Flip_ID_String (int length, char Input[ID_String_Length])

{ /* Flips the JTAG Unit ID string */

 /* since it is read in backwards */

Table A-1. Program Source Code (Sheet 8 of 15)

A AP-720

A-9

 int i,j;

 char Temp[ID_String_Length];

 j = 0; // Initialize Temporary place holder

 for (i=length; i >= 1; --i)

 {

 Temp[j] = Input[i-1];

 ++j;

 }

 for (i=0; i <= (length-1); ++i)

 Input[i] = Temp[i]; // Copy Temp string to perm. one

}

/********** Function to get ID string from the Intel(tm)386EX Chip ********/

void Get_JTAG_Device_ID ()

{

 const char *p="01010101010101010101010101010101";

 // Dummy string, will change value

 // after Send_Data executes

 char ID[ID_String_Length];

 strcpy(ID,p); // Fill with dummy string

 Send_Instruction_IN(strlen(IDCODE),IDCODE); // Do NOT overwrite Instr.

 // Because it resides in the

 // Fixed string area!

 Send_Data(strlen(ID),ID);

 Flip_ID_String(strlen(ID),ID); // Makes MSB first in array

 printf("\nThe JTAG CPU Chip Identifier is: %s\n",ID);

 printf

 ("For Intel386(tm)EX it should be: 00000000001001110000000000010011\n");

}

/**** Function to fill the JTAG array with zeros and set all as inputs **/

void Fill_JTAG(PJTAGdata P)

/**

 Configures pins for typical configuration:

 P15: Out, Low

 ADS: Out, Low

 BHE: Out, Low

 BLE: Out, Low

 WR : Out, Don't Care

 RD : Out, Don't Care

 WRD: Out, Low

 DC : Out, High

 MIO: Out, High

 UCS: Out, Don't Care

 LBA: Out, Low

 All other entries configured as inputs

 Dir Bit Output = i*2

 Data Bit = i*2+1

***/

{

 unsigned i;

 for (i=0;i<=BSR_Length-1;i++)

 P[i] ='0';

 P[P15*2] = '1';

 P[P15*2+1] = '0'; // Make Vpp active to program FLASH

 P[ADS*2] = '1';

 P[ADS*2+1] = '0';

Table A-1. Program Source Code (Sheet 9 of 15)

AP-720 A

A-10

 P[BHE*2] = '1';

 P[BHE*2+1] = '0'; // BHE and BLE active for 16 Bit

 P[BLE*2] = '1';

 P[BLE*2+1] = '0';

 P[WR*2] = '1'; // Not necessary to initialize value

 P[RD*2] = '1'; // Not necessary to initialize value

 P[WRD*2] = '1';

 P[WRD*2+1] = '0'; // WRD is Read by default

 P[DC*2] = '1';

 P[DC*2+1] = '1';

 P[MIO*2] = '1';

 P[MIO*2+1] = '1';

 P[UCS*2] = '1'; // Not necessary to initialize value

 P[LBA*2] = '1';

 P[LBA*2+1] = '0'; // Enables U8 by fooling PLD

}

/******** Function to Set Data Pins given 16 Bit Data ********************/

void Set_Data (PJTAGdata P, word D) /* Sets data onto pins and makes them */

{ /* into outputs */

 int i;

 word M;

 M = 1;

 for (i=D0 ; i>=D15; --i)

 {

 if ((D & M) != FALSE)

 P[i*2+1] = '1';

 else

 P[i*2+1] = '0';

 P[i*2] = '1'; // Data pins are Outputs now

 M <<= 1;

 }

}

/******** Function to set data DIR bits to 0 on 16 bit data bus ***********/

void Get_Data(PJTAGdata P) /** Configures data lines as inputs **/

{

 int i;

 for (i=D0; i>=D15; --i)

 P[i*2] = '0'; // Configure as inputs

}

/**** Function to convert JTAG output string into byte ******************/

word Parse_Data(PJTAGdata P) /** Reads data lines and returns data word **/

{

 int i;

 word M=1,D=0;

 for (i=D0; i>=(D15); --i) // Reads data lines

 {

 if (P[i*2+1] == '1')

 D=D|M;

 M <<= 1;

 }

 return(D);

}

/*********** Function to set the address on the address pins *************/

void Set_Address(PJTAGdata P, unsigned long int Address)

Table A-1. Program Source Code (Sheet 10 of 15)

A AP-720

A-11

{ /* Sets address lines and makes them into outputs */

 int i;

 long int M=1;

 for (i=A1; i>=A25; --i)

 {

 if ((Address & M) != 0)

 P[i*2+1]='1';

 else

 P[i*2+1]='0';

 M <<= 1;

 P[i*2]='1';

 }

 P[UCS*2+1] = '0';

}

/************* Function to read data from FLASH *************************/

word Flash_Read(PJTAGdata P, unsigned long int Address)

{

 Get_Data(P); // Configure Data Bus as inputs

 Set_Address(P,Address); // Set addr on bus

 P[UCS*2+1] = '0'; // Selects Flash chip

 P[RD*2+1] = '0'; // RD#=Low Data

 P[WR*2+1] = '1'; // WR#=High Data

 P[WRD*2+1] = '0'; // For Read

 Send_Data_IN(BSR_Length,P);

 // sets data on the Address bus, Data bus in the input mode

 Send_Data(BSR_Length,P);

 // Latches Data bus into BSR and then shifts it out into P

 return(Parse_Data(P)); // Convert result into binary

}

/******************* Function to Write Data to Flash **********************/

void Flash_Write(PJTAGdata P, unsigned long int A, word D)

{

 Set_Data(P,D); // Output data on bus

 Set_Address(P,A); // Output address

 P[UCS*2+1] = '0'; // Selects Flash Chip

 P[RD*2+1] = '1'; // RD#=High Data

// !!!! ONLY ONE OF SECTIONS 1 or 2 MAY BE USED - COMMENT OUT THE OTHER !!!!

// SECTION 1 - USE IF STROBE# IS CONNECTED DIRECTLY TO FLASH_WE# - FASTEST

 Send_Data_IN(BSR_Length,P);

 Strobe_Data_In(); // Clocks the Par. Port STROBE line

// SECTION 2 - USE IF DRAM WE# IS CONNECTED DIRECTLY TO FLASH_WE# - SLOWER

//

// P[WR*2+1] = '1'; // WR#=High Data

// P[WRD*2+1] = '0'; // For Read

// Send_Data_IN(BSR_Length,P); // Can skip if WE# is already High!

// P[WR*2+1] = '0'; // WR#=Low Data

// P[WRD*2+1] = '1'; // For Write access

// Send_Data_IN(BSR_Length,P);

// P[WR*2+1] = '1'; // WR#=High Data again

// P[WRD*2+1] = '0'; // Read access again */

// Send_Data_IN(BSR_Length,P);

}

/************** Function to read input file name and data *****************/

int Input_File_Name_OK (char input_file_name[80])

{

Table A-1. Program Source Code (Sheet 11 of 15)

AP-720 A

A-12

 FILE *in; // Points to the input file

 printf ("\nEnter name of input file: ");

 scanf ("%80s", input_file_name);

 if ((in = fopen (input_file_name, "rb")) == (FILE *) NULL)

 { printf ("Could not open %s for input data.\n", input_file_name);

 fclose (in);

 return (FALSE); // File not loaded into memory

 }

 else

 {

 printf ("File name is good continuing..... \n");

 fclose (in);

 return (TRUE); // File is loaded in memory

 }

}

/****** Function to retrieve info about FLASH manufacturer and Device ****/

void Get_Flash_Device_ID ()

{

 Send_Instruction_IN(strlen(SAMPLE),SAMPLE);

 // Sample/Preload to initialize BSR

 Send_Instruction_IN(strlen(EXTEST),EXTEST);

 // Configure for External Test

 A=0x0; // Initializer

 Flash_Write(PinState,A,0x90); // Send command to flash: read ID

 RX = Flash_Read(PinState,A); // Rd 1 word Flash Device ID

 printf("\nFlash Chip Intelligent ID reads: %4.4xH",RX);// Print first word

 RX = Flash_Read(PinState,A+1);

 printf(" * %4.4xH\n",RX); // Print second word

 printf("Flash ID for 28F400-T should be: 0089H * 4470H\n");

}

/*** Function checks FLASH status register and displays the contents *****/

void Check_Flash_Status ()

{

 Flash_Write(PinState,A,0x50); // Clears Status Registers

 Flash_Write(PinState,A,0x70); // Send command to flash: RD Status

 RX = Flash_Read(PinState, A);

 printf("\nStatus of the FLASH part is: %4.4xH\n",RX);

 printf("FLASH status should be read: 0080H\n");

}

/******** Function to erase the contents of the entire FLASH chip ********/

void Erase_Flash ()

{

 int index;

 unsigned long int blocks[] =

 {0x0000,0x10000,0x20000,0x30000,0x3C000,0x3D000,0x3E000};

 // Above = Starting *word* address of

 // each of the blocks in a 28F400BV-T

 printf("\nNow Erasing FLASH......Please be patient.....\n");

 for (index=0; index<=6; index++)

 {

 A=blocks[index];

 Flash_Write(PinState,A,0x20);

 Flash_Write(PinState,A,0xD0);

 // Wait until Erase Complete

 do

 {

Table A-1. Program Source Code (Sheet 12 of 15)

A AP-720

A-13

 Flash_Write(PinState,A,0x70); // Check Status Register

 RX = Flash_Read(PinState,A);

 }

 while ((RX & 0x80) == FALSE); // Wait Until Ready again

 printf("Status of FLASH block #%x is: %4.4xH\n", index+1,RX);

 Flash_Write(PinState,A,0x50); // Clears Status Registers for next

 } // block erase

 printf("FLASH status should be read: 0080H\n");

 printf("FLASH has been erased.....Ready to write data.... \n");

}

/****** Function to program the data in the file into the FLASH **********/

unsigned long int Program_Flash_Data () /* Code below outputs data from */

{ /* binary file to the FLASH. Outputs words. */

 A = data_start_address >> 1; // So that starting point can be remembered

 in = fopen (input_file, "rb");

 printf("\nWriting input file data into FLASH... \n");

 printf("Please be patient.... May take 2-10 seconds per kilobyte.\n");

 while ((c = fgetc(in)) != EOF)

 {

 // Code to make a word from two chars

 new_word = 0; // Initializes the two byte word

 new_word = (new_word | c); // Puts first byte into low 8 bits

 c = fgetc(in); // Gets second bytes

 high_part = 0; // Initializes temporary space

 high_part = (high_part | c); // Puts second byte into low 8 bits

 high_part = high_part << 8; // Shifts second byte up 8 bits to top

 new_word = (new_word | high_part); // Combines low 8 and high

 Flash_Write(PinState,A,0x40); // Program set-up command

 Flash_Write(PinState,A,new_word); // Writes 16 bit word

// May add the following section to do status checks for each write

// Not necessary for the very slow speed of parallel port.

// Will severely inhibit performance.

 // do

 // {

 // Flash_Write(PinState,A,0x70); // Check Status Register

 // RX = Flash_Read(PinState,A); // for each word

 // }

 // while ((RX & 0x80) == FALSE); // Wait Until Ready again

 ++A; // Increments address in word mode

 }

 printf("File has been sucessfully read from disk.\n");

 printf("Data programmed at hex byte location %lxH\n", data_start_address);

 if (fclose (in))

 printf ("The file %s was not closed successfully.\n", input_file);

 else

 printf ("The file %s was closed successfully.\n", input_file);

 return (A - (data_start_address >> 1));

}

/************ Function to read the upper 32k of FLASH for Debug **********/

void Read_FLASH_Data (char *FileName,

 unsigned long int AStart,

 unsigned long int Size)

/* Reads 16 bit words from FLASH chip into binary file starting @ AStart */

{

Table A-1. Program Source Code (Sheet 13 of 15)

AP-720 A

A-14

 FILE *DataFile;

 unsigned long int Address;

 word Data;

 printf("\nNow reading back data for verification of program success...\n");

 printf("Please be patient. May take up to 2 seconds per kilobyte.....\n");

 printf("\nFile starting location in FLASH is %lxH\n", AStart);

 printf("File ending location in FLASH is %lxH\n", AStart+(Size<<1));

 Flash_Write(PinState,A,0xFF); // Sets up to read back data

 DataFile = fopen(FileName, "w+b");

 AStart = AStart >> 1; // For word access addressing

 for (Address = AStart; Address < AStart+Size; Address++)

 {

 Data=Flash_Read(PinState,Address);

 if (fwrite(&Data, sizeof(Data),1,DataFile) != 1)

 printf("problem writing to file");

 }

 fclose(DataFile);

 printf

 ("\nFile verification image has been written to file ""VERIFY.BIN""...\n");

 printf

 ("WARNING: Verification file will contain one extra byte for\n");

 printf

 ("input files with odd byte counts.\n");

}

/***/

/***************************** BEGIN MAIN ******************************/

/***/

void main ()

{

 if (Input_File_Name_OK (input_file))

 {

 printf // On next line...

 ("\n********* INTEL i386EX PROGRAMS FLASH VIA THE JTAG PORT *********\n");

 Fill_JTAG(PinState); // Initialization string

 Reset_JTAG(); // Reset the JTAG unit

 // Reset board while TRST# is low

 // to insure proper startup

 printf("\nWARNING: Reset Evaluation Board now and press any key.\n");

 while (!_kbhit()); // Waits until a key is hit

 _getch(); // Throws away character

 Restore_Idle(); // Used to reset JTAG state machine

 Get_JTAG_Device_ID(); // Get ID - see 386EX manual for code

 Get_Flash_Device_ID(); // Get ID - see flash manual

 Check_Flash_Status(); // Check status register example

 Erase_Flash(); // Erases the entire Flash chip

 printf("\nEnter starting address of program data in hex bytes: ");

 scanf("%lx",&data_start_address); // Scans starting address in hex

 // Uses word mode below

 i = Program_Flash_Data(); // Opens file and programs FLASH data

 Check_Flash_Status(); // Checks status before continuing

 Read_FLASH_Data("verify.bin", data_start_address, i); // Copy contents to

 // file to verify OK

 printf("\nThe board must now be reset to return to normal operation.");

 // Reset board while TRST# is low

 // to insure proper startup

 printf("\nWARNING: Reset Evaluation Board now and press any key.\n");

 while (!_kbhit()); // Waits until a key is hit

Table A-1. Program Source Code (Sheet 14 of 15)

A AP-720

A-15

 _getch(); // Throws away character

 Reset_JTAG(); // Reset TAP to release BSR control

 printf("\n<<<<<<<<<<<<<<<< The end... >>>>>>>>>>>>>>>>>\n\n");

 printf(" Hit any key to return to DOS.\n");

 while (!_kbhit()); // Waits until a key is hit

 _getch(); // Throws away character

 }

 else

 {

 printf("File transmission unsuccessful.\n");

 printf("Please check input file and physical connections.\n");

 }

}

/***************************** END MAIN ********************************/

Table A-1. Program Source Code (Sheet 15 of 15)

A AP-720

B-1

APPENDIX B
Intel386 TM EX Embedded Processor BSDL File

The following BSDL file for the A and B steppings of the Intel386 EX embedded processor is located on Intel’s America’s
Application Support BBS, at (916) 356-3600. It is contained in the zipped file called JTAGBSDL.ZIP located in the
Intel386TM EX embedded processor area.

Table B-1. BSDL File (Sheet 1 of 10)

-- Copyright Intel Corporation 1994

--***

-- Intel Corporation makes no warranty for the use of its products

-- and assumes no responsibility for any errors which may appear in

-- this document nor does it make a commitment to update the information

-- contained herein.

--***

-- Boundary-Scan Description Language (BSDL Version 0.0) is a de-facto

-- standard means of describing essential features of ANSI/IEEE 1149.1-1993

-- compliant devices. This language is under consideration by the IEEE for

-- formal inclusion within a supplement to the 1149.1-1990 standard. The

-- generation of the supplement entails an extensive IEEE review and a formal

-- acceptance balloting procedure which may change the resultant form of the

-- language. Be aware that this process may extend well into 1993, and at

-- this time the IEEE does not endorse or hold an opinion on the language.

--***

--

-- Intel386 (TM) EX Processor BSDL Model

-- File **NOT** verified electrically

-- ---

-- Rev 0.4 14 Sep 1994

--The following list describes all of the pins that are contained in the E3D

entity i386_EX_Processor is

 generic(PHYSICAL_PIN_MAP : string := “PQFP_132”);

port(

D15 : inout bit;

D14 : inout bit;

D13 : inout bit;

D12 : inout bit;

D11 : inout bit;

D10 : inout bit;

D9 : inout bit;

D8 : inout bit;

D7 : inout bit;

D6 : inout bit;

D5 : inout bit;

D4 : inout bit;

D3 : inout bit;

D2 : inout bit;

D1 : inout bit;

D0 : inout bit;

AP-720 A

B-2

LBAbar : inout bit;

LCSbar : inout bit;

UCSbar : inout bit;

P27XCTS0 : inout bit;

P26XTXD0 : inout bit;

P25XRXD0 : inout bit;

DACK0barXGCS5bar : inout bit;

P24XGCS4bar : inout bit;

P23XGCS3bar : inout bit;

P22XGCS2bar : inout bit;

P21XGCS1bar : inout bit;

P20XGCS0bar : inout bit;

SMIACTbarXEXCSIG : inout bit;

DRQ1XRXD1 : inout bit;

DRQ0XDCD1bar : inout bit;

WDTOUT : inout bit;

EOPbarXCTS1bar : inout bit;

DACK1barXTXD1 : inout bit;

P17XHLDA : inout bit;

RESET : inout bit;

P16XHOLD : inout bit;

P15XLOCKbar : inout bit;

P14XRIObar : inout bit;

P13XDSR0bar : inout bit;

P12XDTR0bar : inout bit;

P11XRTS0bar : inout bit;

P10XDCD0bar : inout bit;

FLTbar : inout bit;

DSR1barXSTXCLK : inout bit;

INT7XTMRGATE1 : inout bit;

INT6XTMRCLK1 : inout bit;

INT5XTMRGATE0 : inout bit;

INT4XTMRCLK0 : inout bit;

BUSYbarXTMRGATE2 : inout bit;

ERRORbarXTMROUT2 : inout bit;

NMI : inout bit;

PEREQXTMRCLK2 : inout bit;

P37XCOMCLK : inout bit;

P36XPWRDOWN : inout bit;

P35XINT3 : inout bit;

P34XINT2 : inout bit;

P33XINT1 : inout bit;

P32XINT0 : inout bit;

RTS1barXSSIOTX : inout bit;

RI1barXSSIORX : inout bit;

DTR1barXSRXCLK : inout bit;

P31XTMROUT1 : inout bit;

P30XTMROUT0 : inout bit;

SMIbar : inout bit;

A25 : inout bit;

A24 : inout bit;

A23 : inout bit;

A22 : inout bit;

A21 : inout bit;

A20 : inout bit;

Table B-1. BSDL File (Sheet 2 of 10)

A AP-720

B-3

A19 : inout bit;

A18XCAS2 : inout bit;

A17XCAS1 : inout bit;

A16XCAS0 : inout bit;

A15 : inout bit;

A14 : inout bit;

A13 : inout bit;

A12 : inout bit;

A11 : inout bit;

A10 : inout bit;

A9 : inout bit;

A8 : inout bit;

A7 : inout bit;

A6 : inout bit;

A5 : inout bit;

A4 : inout bit;

A3 : inout bit;

A2 : inout bit;

A1 : inout bit;

NAbar : inout bit;

ADSbar : inout bit;

BHEbar : inout bit;

BLEbar : inout bit;

WRbar : inout bit;

RDbar : inout bit;

BS8bar : inout bit;

READYbar : inout bit;

WXRbar : inout bit;

DXCbar : inout bit;

MXIObar : inout bit;

TCK : in bit;

TDI : in bit;

TMS : in bit;

TRSTbar : in bit;

TDO : out bit;

VCC : linkage bit_vector(0 to 10);

VSS : linkage bit_vector(0 to 12));

 use STD_1149_1_1990.all;

--This list describes the physical pin layout of all signals

 attribute PIN_MAP of i386_EX_Processor : entity is PHYSICAL_PIN_MAP;

constant PQFP_132 : PIN_MAP_STRING := -- Define PinOut of PQFP

“D15 : 23,”&

“D14 : 22,”&

“D13 : 21,”&

“D12 : 20,”&

“D11 : 19,”&

“D10 : 18,”&

“D9 : 16,”&

“D8 : 14,”&

“D7 : 13,”&

Table B-1. BSDL File (Sheet 3 of 10)

AP-720 A

B-4

“D6 : 12,”&

“D5 : 11,”&

“D4 : 10,”&

“D3 : 8,”&

“D2 : 7,”&

“D1 : 6,”&

“D0 : 5,”&

“LBAbar : 4,”&

“LCSbar : 2,”&

“UCSbar : 1,”&

“P27XCTS0 : 132,”&

“P26XTXD0 : 131,”&

“P25XRXD0 : 129,”&

“DACK0barXGCS5bar : 128,”&

“P24XGCS4bar : 126,”&

“P23XGCS3bar : 125,”&

“P22XGCS2bar : 124,”&

“P21XGCS1bar : 123,”&

“P20XGCS0bar : 122,”&

“SMIACTbarXEXCSIG : 120,”&

“DRQ1XRXD1 : 118,”&

“DRQ0XDCD1bar : 117,”&

“WDTOUT : 114,”&

“EOPbarXCTS1bar : 113,”&

“DACK1barXTXD1 : 112,”&

“P17XHLDA : 111,”&

“RESET : 110,”&

“P16XHOLD : 108,”&

“P15XLOCKbar : 107,”&

“P14XRIObar : 106,”&

“P13XDSR0bar : 105,”&

“P12XDTR0bar : 104,”&

“P11XRTS0bar : 102,”&

“P10XDCD0bar : 101,”&

“FLTbar : 99,”&

“DSR1barXSTXCLK : 98,”&

“INT7XTMRGATE1 : 96,”&

“INT6XTMRCLK1 : 95,”&

“INT5XTMRGATE0 : 94,”&

“INT4XTMRCLK0 : 93,”&

“BUSYbarXTMRGATE2 : 92,”&

“ERRORbarXTMROUT2 : 91,”&

“NMI : 90,”&

“PEREQXTMRCLK2 : 89,”&

“P37XCOMCLK : 87,”&

“P36XPWRDOWN : 86,”&

“P35XINT3 : 85,”&

“P34XINT2 : 84,”&

“P33XINT1 : 82,”&

“P32XINT0 : 80,”&

“RTS1barXSSIOTX : 79,”&

“RI1barXSSIORX : 78,”&

“DTR1barXSRXCLK : 77,”&

“P31XTMROUT1 : 75,”&

“P30XTMROUT0 : 74,”&

Table B-1. BSDL File (Sheet 4 of 10)

A AP-720

B-5

“SMIbar : 73,”&

“A25 : 72,”&

“A24 : 70,”&

“A23 : 68,”&

“A22 : 67,”&

“A21 : 66,”&

“A20 : 65,”&

“A19 : 63,”&

“A18XCAS2 : 62,”&

“A17XCAS1 : 61,”&

“A16XCAS0 : 59,”&

“A15 : 58,”&

“A14 : 57,”&

“A13 : 56,”&

“A12 : 55,”&

“A11 : 54,”&

“A10 : 53,”&

“A9 : 52,”&

“A8 : 51,”&

“A7 : 50,”&

“A6 : 49,”&

“A5 : 48,”&

“A4 : 45,”&

“A3 : 44,”&

“A2 : 43,”&

“A1 : 42,”&

“NAbar : 41,”&

“ADSbar : 40,”&

“BHEbar : 39,”&

“BLEbar : 37,”&

“WRbar : 35,”&

“RDbar : 34,”&

“BS8bar : 33,”&

“READYbar : 32,”&

“WXRbar : 30,”&

“DXCbar : 29,”&

“MXIObar : 27,”&

“TRSTbar : 119,”&

“TDO : 24,”&

“TDI : 25,”&

“TMS : 26,”&

“TCK : 76,”&

“VCC : (15,28,38,47,60,71,81,88,109,121,127),”&

“VSS : (3,17,31,36,46,64,69,83,97,100,103,116,130)”;

 attribute Tap_Scan_In of TDI : signal is true;

 attribute Tap_Scan_Mode of TMS : signal is true;

 attribute Tap_Scan_Out of TDO : signal is true;

 attribute Tap_Scan_Reset of TRSTBAR : signal is true;

 attribute Tap_Scan_Clock of TCK : signal is (33.0e6, BOTH);

 attribute Instruction_Length of i386_EX_Processor: entity is 4;

 attribute Instruction_Opcode of i386_EX_Processor: entity is

 “BYPASS (1111),” &

Table B-1. BSDL File (Sheet 5 of 10)

AP-720 A

B-6

 “EXTEST (0000),” &

 “SAMPLE (0001),” &

 “IDCODE (0010),” &

 “HIGHZ (1000),” &

 “Reserved (1100, 1011)”;

-- Private instructions DO NOT belong in BSDL

attribute Instruction_Capture of i386_EX_Processor: entity is “0001”;

 -- there is no Instruction_Disable attribute for i386_EX_Processor

 attribute Instruction_Private of i386_EX_Processor: entity is “Reserved” ;

 attribute Idcode_Register of i386_EX_Processor: entity is

 “0000” & --version,

 “0000001001110000” & --part number ??

 “00000001001” & --manufacturers identity

 “1”; --required by the standard

 attribute Register_Access of i386_EX_Processor: entity is

“Bypass (HIGHZ)”;

--{***}

--{ The first cell, cell 0, is closest to TDO }

--{***}

attribute Boundary_Cells of i386_EX_Processor: entity is “BC_6, BC_2”;

attribute Boundary_Length of i386_EX_Processor: entity is 202;

attribute Boundary_Register of i386_EX_Processor: entity is

“0 (BC_2, *, control, 0),” &

“1 (BC_6, D15, bidir, X, 0, 0, Z),” &

“2 (BC_2, *, control, 0),” &

“3 (BC_6, D14, bidir, X, 2, 0, Z),” &

“4 (BC_2, *, control, 0),” &

“5 (BC_6, D13, bidir, X, 4, 0, Z),” &

“6 (BC_2, *, control, 0),” &

“7 (BC_6, D12, bidir, X, 6, 0, Z),” &

“8 (BC_2, *, control, 0),” &

“9 (BC_6, D11, bidir, X, 8, 0, Z),” &

“10 (BC_2, *, control, 0),” &

“11 (BC_6, D10, bidir, X, 10, 0, Z),” &

“12 (BC_2, *, control, 0),” &

“13 (BC_6, D9, bidir, X, 12, 0, Z),” &

“14 (BC_2, *, control, 0),” &

“15 (BC_6, D8, bidir, X, 14, 0, Z),” &

“16 (BC_2, *, control, 0),” &

“17 (BC_6, D7, bidir, X, 16, 0, Z),” &

“18 (BC_2, *, control, 0),” &

“19 (BC_6, D6, bidir, X, 18, 0, Z),” &

“20 (BC_2, *, control, 0),” &

“21 (BC_6, D5, bidir, X, 20, 0, Z),” &

“22 (BC_2, *, control, 0),” &

“23 (BC_6, D4, bidir, X, 22, 0, Z),” &

“24 (BC_2, *, control, 0),” &

“25 (BC_6, D3, bidir, X, 24, 0, Z),” &

Table B-1. BSDL File (Sheet 6 of 10)

A AP-720

B-7

“26 (BC_2, *, control, 0),” &

“27 (BC_6, D2, bidir, X, 26, 0, Z),” &

“28 (BC_2, *, control, 0),” &

“29 (BC_6, D1, bidir, X, 28, 0, Z),” &

“30 (BC_2, *, control, 0),” &

“31 (BC_6, D0, bidir, X, 30, 0, Z),” &

“32 (BC_2, *, control, 0),” &

“33 (BC_6, LBAbar, bidir, X, 32, 0, Z),” &

“34 (BC_2, *, control, 0),” &

“35 (BC_6, LCSbar, bidir, X, 34, 0, Z),” &

“36 (BC_2, *, control, 0),” &

“37 (BC_6, UCSbar, bidir, X, 36, 0, Z),” &

“38 (BC_2, *, control, 0),” &

“39 (BC_6, P27XCTS0, bidir, X, 38, 0, Z),” &

“40 (BC_2, *, control, 0),” &

“41 (BC_6, P26XTXD0, bidir, X, 40, 0, Z),” &

“42 (BC_2, *, control, 0),” &

“43 (BC_6, P25XRXD0, bidir, X, 42, 0, Z),” &

“44 (BC_2, *, control, 0),” &

“45 (BC_6, DACK0barXGCS5bar, bidir, X, 44, 0, Z),” &

“46 (BC_2, *, control, 0),” &

“47 (BC_6, P24XGCS4bar, bidir, X, 46, 0, Z),” &

“48 (BC_2, *, control, 0),” &

“49 (BC_6, P23XGCS3bar, bidir, X, 48, 0, Z),” &

“50 (BC_2, *, control, 0),” &

“51 (BC_6, P22XGCS2bar, bidir, X, 50, 0, Z),” &

“52 (BC_2, *, control, 0),” &

“53 (BC_6, P21XGCS1bar, bidir, X, 52, 0, Z),” &

“54 (BC_2, *, control, 0),” &

“55 (BC_6, P20XGCS0bar, bidir, X, 54, 0, Z),” &

“56 (BC_2, *, control, 0),” &

“57 (BC_6, SMIACTbarXEXCSIG, bidir, X, 56, 0, Z),” &

“58 (BC_2, *, control, 0),” &

“59 (BC_6, DRQ1XRXD1, bidir, X, 58, 0, Z),” &

“60 (BC_2, *, control, 0),” &

“61 (BC_6, DRQ0XDCD1bar, bidir, X, 60, 0, Z),” &

“62 (BC_2, *, control, 0),” &

“63 (BC_6, WDTOUT, bidir, X, 62, 0, Z),” &

“64 (BC_2, *, control, 0),” &

“65 (BC_6, EOPbarXCTS1bar, bidir, X, 64, 0, Z),” &

“66 (BC_2, *, control, 0),” &

“67 (BC_6, DACK1barXTXD1, bidir, X, 66, 0, Z),” &

“68 (BC_2, *, control, 0),” &

“69 (BC_6, P17XHLDA, bidir, X, 68, 0, Z),” &

“70 (BC_2, *, control, 0),” &

“71 (BC_6, RESET, bidir, X, 70, 0, Z),” &

“72 (BC_2, *, control, 0),” &

“73 (BC_6, P16XHOLD, bidir, X, 72, 0, Z),” &

“74 (BC_2, *, control, 0),” &

“75 (BC_6, P15XLOCKbar, bidir, X, 74, 0, Z),” &

“76 (BC_2, *, control, 0),” &

“77 (BC_6, P14XRIObar, bidir, X, 76, 0, Z),” &

“78 (BC_2, *, control, 0),” &

“79 (BC_6, P13XDSR0bar, bidir, X, 78, 0, Z),” &

“80 (BC_2, *, control, 0),” &

“81 (BC_6, P12XDTR0bar, bidir, X, 80, 0, Z),” &

Table B-1. BSDL File (Sheet 7 of 10)

AP-720 A

B-8

“82 (BC_2, *, control, 0),” &

“83 (BC_6, P11XRTS0bar, bidir, X, 82, 0, Z),” &

“84 (BC_2, *, control, 0),” &

“85 (BC_6, P10XDCD0bar, bidir, X, 84, 0, Z),” &

“86 (BC_2, *, control, 0),” &

“87 (BC_6, FLTbar, bidir, X, 86, 0, Z),” &

“88 (BC_2, *, control, 0),” &

“89 (BC_6, DSR1barXSTXCLK, bidir, X, 88, 0, Z),” &

“90 (BC_2, *, control, 0),” &

“91 (BC_6, INT7XTMRGATE1, bidir, X, 90, 0, Z),” &

“92 (BC_2, *, control, 0),” &

“93 (BC_6, INT6XTMRCLK1, bidir, X, 92, 0, Z),” &

“94 (BC_2, *, control, 0),” &

“95 (BC_6, INT5XTMRGATE0, bidir, X, 94, 0, Z),” &

“96 (BC_2, *, control, 0),” &

“97 (BC_6, INT4XTMRCLK0, bidir, X, 96, 0, Z),” &

“98 (BC_2, *, control, 0),” &

“99 (BC_6, BUSYbarXTMRGATE2, bidir, X, 98, 0, Z),” &

“100 (BC_2, *, control, 0),” &

“101 (BC_6, ERRORbarXTMROUT2, bidir, X, 100, 0, Z),” &

“102 (BC_2, *, control, 0),” &

“103 (BC_6, NMI, bidir, X, 102, 0, Z),” &

“104 (BC_2, *, control, 0),” &

“105 (BC_6, PEREQXTMRCLK2, bidir, X, 104, 0, Z),” &

“106 (BC_2, *, control, 0),” &

“107 (BC_6, P37XCOMCLK, bidir, X, 106, 0, Z),” &

“108 (BC_2, *, control, 0),” &

“109 (BC_6, P36XPWRDOWN, bidir, X, 108, 0, Z),” &

“110 (BC_2, *, control, 0),” &

“111 (BC_6, P35XINT3, bidir, X, 110, 0, Z),” &

“112 (BC_2, *, control, 0),” &

“113 (BC_6, P34XINT2, bidir, X, 112, 0, Z),” &

“114 (BC_2, *, control, 0),” &

“115 (BC_6, P33XINT1, bidir, X, 114, 0, Z),” &

“116 (BC_2, *, control, 0),” &

“117 (BC_6, P32XINT0, bidir, X, 116, 0, Z),” &

“118 (BC_2, *, control, 0),” &

“119 (BC_6, RTS1barXSSIOTX, bidir, X, 118, 0, Z),” &

“120 (BC_2, *, control, 0),” &

“121 (BC_6, RI1barXSSIORX, bidir, X, 120, 0, Z),” &

“122 (BC_2, *, control, 0),” &

“123 (BC_6, DTR1barXSRXCLK, bidir, X, 122, 0, Z),” &

“124 (BC_2, *, control, 0),” &

“125 (BC_6, P31XTMROUT1, bidir, X, 124, 0, Z),” &

“126 (BC_2, *, control, 0),” &

“127 (BC_6, P30XTMROUT0, bidir, X, 126, 0, Z),” &

“128 (BC_2, *, control, 0),” &

“129 (BC_6, SMIbar, bidir, X, 128, 0, Z),” &

“130 (BC_2, *, control, 0),” &

“131 (BC_6, A25, bidir, X, 130, 0, Z),” &

“132 (BC_2, *, control, 0),” &

“133 (BC_6, A24, bidir, X, 132, 0, Z),” &

“134 (BC_2, *, control, 0),” &

“135 (BC_6, A23, bidir, X, 134, 0, Z),” &

“136 (BC_2, *, control, 0),” &

Table B-1. BSDL File (Sheet 8 of 10)

A AP-720

B-9

“137 (BC_6, A22, bidir, X, 136, 0, Z),” &

“138 (BC_2, *, control, 0),” &

“139 (BC_6, A21, bidir, X, 138, 0, Z),” &

“140 (BC_2, *, control, 0),” &

“141 (BC_6, A20, bidir, X, 140, 0, Z),” &

“142 (BC_2, *, control, 0),” &

“143 (BC_6, A19, bidir, X, 142, 0, Z),” &

“144 (BC_2, *, control, 0),” &

“145 (BC_6, A18XCAS2, bidir, X, 144, 0, Z),” &

“146 (BC_2, *, control, 0),” &

“147 (BC_6, A17XCAS1, bidir, X, 146, 0, Z),” &

“148 (BC_2, *, control, 0),” &

“149 (BC_6, A16XCAS0, bidir, X, 148, 0, Z),” &

“150 (BC_2, *, control, 0),” &

“151 (BC_6, A15, bidir, X, 150, 0, Z),” &

“152 (BC_2, *, control, 0),” &

“153 (BC_6, A14, bidir, X, 152, 0, Z),” &

“154 (BC_2, *, control, 0),” &

“155 (BC_6, A13, bidir, X, 154, 0, Z),” &

“156 (BC_2, *, control, 0),” &

“157 (BC_6, A12, bidir, X, 156, 0, Z),” &

“158 (BC_2, *, control, 0),” &

“159 (BC_6, A11, bidir, X, 158, 0, Z),” &

“160 (BC_2, *, control, 0),” &

“161 (BC_6, A10, bidir, X, 160, 0, Z),” &

“162 (BC_2, *, control, 0),” &

“163 (BC_6, A9, bidir, X, 162, 0, Z),” &

“164 (BC_2, *, control, 0),” &

“165 (BC_6, A8, bidir, X, 164, 0, Z),” &

“166 (BC_2, *, control, 0),” &

“167 (BC_6, A7, bidir, X, 166, 0, Z),” &

“168 (BC_2, *, control, 0),” &

“169 (BC_6, A6, bidir, X, 168, 0, Z),” &

“170 (BC_2, *, control, 0),” &

“171 (BC_6, A5, bidir, X, 170, 0, Z),” &

“172 (BC_2, *, control, 0),” &

“173 (BC_6, A4, bidir, X, 172, 0, Z),” &

“174 (BC_2, *, control, 0),” &

“175 (BC_6, A3, bidir, X, 174, 0, Z),” &

“176 (BC_2, *, control, 0),” &

“177 (BC_6, A2, bidir, X, 176, 0, Z),” &

“178 (BC_2, *, control, 0),” &

“179 (BC_6, A1, bidir, X, 178, 0, Z),” &

“180 (BC_2, *, control, 0),” &

“181 (BC_6, NAbar, bidir, X, 180, 0, Z),” &

“182 (BC_2, *, control, 0),” &

“183 (BC_6, ADSbar, bidir, X, 182, 0, Z),” &

“184 (BC_2, *, control, 0),” &

“185 (BC_6, BHEbar, bidir, X, 184, 0, Z),” &

“186 (BC_2, *, control, 0),” &

“187 (BC_6, BLEbar, bidir, X, 186, 0, Z),” &

“188 (BC_2, *, control, 0),” &

“189 (BC_6, WRbar, bidir, X, 188, 0, Z),” &

“190 (BC_2, *, control, 0),” &

“191 (BC_6, RDbar, bidir, X, 190, 0, Z),” &

“192 (BC_2, *, control, 0),” &

Table B-1. BSDL File (Sheet 9 of 10)

AP-720 A

B-10

“193 (BC_6, BS8bar, bidir, X, 192, 0, Z),” &

“194 (BC_2, *, control, 0),” &

“195 (BC_6, READYbar, bidir, X, 194, 0, Z),” &

“196 (BC_2, *, control, 0),” &

“197 (BC_6, WXRbar, bidir, X, 196, 0, Z),” &

“198 (BC_2, *, control, 0),” &

“199 (BC_6, DXCbar, bidir, X, 198, 0, Z),” &

“200 (BC_2, *, control, 0),” &

“201 (BC_6, MXIObar, bidir, X, 200, 0, Z)”;

end i386_EX_Processor;

Table B-1. BSDL File (Sheet 10 of 10)

	Programming Flash Memory through the Intel386™ EX Embedded Microprocessor JTAG Port
	Contents
	1.0 INTRODUCTION
	1.1 Design Motivation

	2.0 BACKGROUND INFORMATION
	2.1 IEEE 1149.1 - The JTAG Specification
	2.1.1 TAP Signal Descriptions
	2.1.2 JTAG State Machine

	2.2 Intel386 EX Embedded Processor JTAG Test-Logic Unit
	2.2.1 Boundary Scan Register
	2.2.2 Identification Code Register

	2.3 Intel 4 Mbit Boot Block Flash

	3.0 SAMPLE DESIGN
	3.1 TAP Hardware Interface
	3.2 JTAG Software Interface
	3.2.1 Hardware Considerations
	3.2.2 Assembly Language Routines
	3.2.3 “C” Routines
	3.2.4 Program Operation and Options

	4.0 PERFORMANCE ANALYSIS AND CONSIDERATIONS
	5.0 CONCLUSION
	6.0 RELATED INFORMATION
	APPENDIX A PROGRAM SOURCE CODE
	APPENDIX B Intel386™ EX Embedded Processor BSDL File
	Figures
	Figure 1. TAP Controller (Finite State Machine)
	Figure 2. TAP Parallel Port Interface

	Tables
	Table 1. Test-Logic Unit Instructions
	Table 2. Boundary-scan Register Bit Assignments
	Table 3. Device Identification Codes
	Table 4. TAPLOADER.EXE Order of Execution
	Table 5. TAP Flash Programming Sample Timings
	Table 6. Related Intel Documents
	Table A-1. Program Source Code
	Table B-1. BSDL File

