

INSTRUCTION FORMAT AND TIMING

a e - .8 38 Tbl81 061 nstructon et oc S CI kC ount S ummary (c ontinued)
CLOCK COUNT NOTES

Real Real
INSTRUCTION FORMAT Address Protected Address Protected

Mode or Virtual Mode or Virtual
Virtual Address Virtual Address
8086 Mode 8066 Mode
Mode Mode

INTERRUPT INSTRUCTIONS (Continued)

BOUND:

Via Interrupt or Trap Gate

to Same Privilege Level 59 g, j, k, r
Via Interrupt or Trap Gate

to Different Privilege Level 99 g, j, k, r
From 286 Task to 286 TSS via Task Gate 254 g,j, k, r
From 286 Task to 386 TSS via Task Gate 284 g,j, k, r
From 268 Task to virt 8086 MOde via Task Gate 231 g,j, k,r
From 386 Task to 286 TSS via Task Gate 264 g,j, k,r
From 386 Task to 386 TSS via Task Gate 294 g, j, k, r
From 368 Task tovirt 8086 Mode via Task Gate 243 g, j, k, r,
From virt 8086 Mode to 286 TSS via Task Gate 264 g,j, k, r
From virt 8086 Mode to 386 TSS via Task Gate 294 g,j, k, r
From virt 8086 md to priv level 0 via Trap Gate or Interrupt Gate 119

INTERRUPT RETURN

IRET �~� Interrupt Return I 11001111 I 22 g, h, j, k, r

Protected MOde Only (I RET)
To the Same Privilege Level (within task) 38 g, h,j, k, r
To Different Privilege Level (within task) 82 g, h, j, k, r
From 286 Task to 286 TSS 232 h,j, k, r
From 286 Task to 386 TSS 265 h,j,k,r
From 286 Task to Virtual80S6 Task 214 h,i, k, r
From 286 Task to Virtual 80S6 Mode (within task) 60
From 386 Task to 286 TSS 271 h,j,k, r
From 386 Task to 386 TSS 275 h,j, k, r
From 386 Task to Virtual80S6 Task 224 h,j,k,r
From 386 Task to Virtual 80S6 Mode (within task) 60

PROCESSOR CONTROL

HLT �~� HALT I 11110100 I 5 5 I

MOV �~� Move to and From Control/DebuglTest Reglaters

CRO/CR2/CR3 from register I 00001111 I 00100010 I 11 eeereg 10/4/5 10/4/5 I

Register From CRO-3 I 00001111 I 00100000 I 11 eee reg 6 6 I

DRO-3 From Register I 00001111 I 00100011 I 1 1 eee reg 22 22 I

DR6-7 From Register I 00001111 I 00100011 I 1 1 eee reg 16 16 I

Register from DRS-7 I 00001111 I 00100001 I 11 eee reg 14 14 I

Register from DRO-3 I 00001111 I 00100001 I 11 eeereg I 22 22 I

TR6-7 from Register I 00001111 I 00100110 I 11 eee reg I 12 12 I

Register from TR6-7 I 00001111 I 00100100 I 11 eee reg I 12 12 I

NOP = No Operation I 10010000 I 3 3

WAIT �~� Walt unlll BUSY # pin 10 negated I 10011011 I 6 6

E-13

INSTRUCTION FORMAT AND TIMING

Table 8·1. 80386 Instruction Set Clock Count Summary (Continued)
CLOCK COUNT NOTES

Real Rael
INSTRUCTION FORMAT Add Protected Add Protected

Mode or Virtual Mode or Virtual
Virtual Addre .. Virtual Addre ..
8086 Mode 8086 Mode
Mode Mode

PROCESSOR EXTENSION INSTRUCTIONS

Processor Extension Escape I 11011TTT ImodLLL rIm I See h

TIT and LLL bits are opcode 80287/80387

information for coprocessor. data sheets for
clock counts

PREFIX BYTES

Addre .. Size P .. flx I 01100111 I 0 0

LOCK ~ Bus Lock Prefix I 11110000 I 0 0 m

Operand Size Prefix I 01100110 I 0 0

segment Override Prefix

CS: I 00101110 I 0 0

DS: I 00111110 0 0

ES: I 00100110 0 0

FS: I 01100100 0 0

GS: I 01100101 0 0

ss: I 00110110 0 0

PROTECTION CONTROL

ARPL ~ AdJust Reque.ted Privilege Level

From Register/Memory I 01100011 I mod reg r/ml N/A 20/21 a h

LAR ~ Load Acce .. Rights

From Register/Memory I 00001111 I 00000010 I mad reg rIm I N/A 15/16 a g, h,i, P

LGDT ~ Load Global Descriptor

Table Register I 00001111 I 00000001 ImodOl0 rIm I 11 11 b,c h, I

LIDT ~ Load Interrupt DeSCriptor

Table Register I 00001111 I 00000001 I modO 11 rIm I 11 11 b,c h,1

LLDT ~ Load Local Descriptor

Table Register to
Register/Memory I 00001111 I 00000000 ImodOl0 rIm! N/A 20/24 a g,h,i,1

LMSW ~ Load Machine Status Word

From Register IMemory I 00001111 I 00000001 I mod 11 0 rIm! 10/13 10/13 b,c h, I

LSL ~ Load Segment Limit

From Register/Memory I 00001111 I 00000011 I mod reg r/ml

Byte-Granular Limit N/A 20/21 a g,h,i, p
Page-Granular Limit N/A 25/26 a g, h,i, P

LTR ~ Load Task Register

From Register/Memory I 00001111 I 00000000 ImOdOOI rIm! N/A 23/27 a g, h,i, I

SGDT ~ Store Global D.scrlptor

Table Register I 00001111 I 00000001 ImodOOO rIm! 9 9 b,c h

E-14

INSTRUCTION FORMAT AND TIMING

Table 8-1. 80386 Instruction Set Clock Count Summary (Continued)
CLOCK COUNT NOTES

Real Real
INSTRUCTION FORMAT Addr ... Protected Add Protected

Mode or Virtual Mod_or Virtual
Virtual Addr ... Virtual Addr ...
8086 Mod. 8086 Mode
Mode Mod.

SIDT - Store Interrupt Descriptor

Table Regllter I 00001111 I 00000001 ImodOOl rIm I 9 9 b, C h

SLDT - Stora Local Descriptor Table Reglater

To RegisterlMemory I 00001111 I 00000000 I modOOO r/ml N/A 2/2 a h

SMSW - Store Machine
Statu. Word I 00001111 I 00000001 Imodl00 r/ml 10113 10/13 b,c h, I

STR -Store Taak Reglater

To Register/Memory I 00001111 I 00000000 I modOO 1 r/ml N/A 2/2 a h

VERR - Verify Read Ace.a ..

Register/Memory I 00001111 I 00000000 Imodl00 r/ml N/A 10/11 a g, h,j,p

VERW - Verify Write Accessl I 00001111 I 00000000 I modI 0 1 rIm I N/A 15116 a g, h,i,p

INSTRUCTION NOTES~FOR TABLE 8-1

Note8 a through C apply to 80386 Real Address Mode only:
a. This is a Protected Mode instruction, Attempted execution in Real Mode will result in exception 6 (invalid opcode).
b, Exception 13 fault (general protection) will occur in Real Mode if an operand reference is made that partially or fully
extends beyond the maximum CS, OS, ES, FS or GS limit, FFFFH, Exception 12 fault (stack segment limit violation or not
present) will occur in Real Mode if an operand reference is made that partially or fully extends beyond the maximum SS limit.
c. This instruction may be executed in Real Mode, In Real Mode, its purpose is primarily to initialize the CPU for .Protected
Mode.

Notes d through g apply to 80386 Real Address Mode and 80386 Protected Vlrtuel Address Mode:
d. The 80386 uses an early-out multiply algorithm. The actual number of clocks depends on the position of the most
significant bit in the operand (multiplier),

Clock counts given are minimum to maximum. To calculate actual clocks use the following formula:
Actual Clock = if m < > 0 then max ([Iog2 Imll. 3) + 6 clocks:

if m = 0 then 9 clocks (where m is the multiplier)
e. An exception may occur, depending on the value of the operand.
I. LOCKiI' is automatically asserted, regardless of the presence or absence of the LOCKiI' prefix,
g. LOCKiI' is asserted during descriptor table accesses.

Notes h through r apply to 80386 Protected Virtual Address Mode only:
h. Exception 13 fault (general protection violation) will occur if the memory operand in CS, OS, ES, FS or GS cannot be used
due to either a segment limit violation or access rights violation, If a stack limit is violated, an exception 12 (stack segment
limit violation or not present) occurs.
i. For segment load operations, the CPL, RPL, and OPL must agree with the privilege rules to avoid an exception 13 fault
(general protection violation). The segment's descriptor must indicate "present" or exception 11 (CS, OS, ES, FS, GS not
present). If the SS register is loaded and a stack segment not present is detected, an exception 12 (stack segment limit
violation or not present) occurs.
j, All segment descriptor accesses in the GOT or LOT made by this instruction will automatically assert LOCKiI' to maintain
descriptor integrity in multiprocessor systems.
k. JMP, CALL, INT, RET and IRET instructions referring to another code segment will cause an exception 13 (general
protection violation) if an applicable privilege rule is violated.
I. An exception 13 fault occurs if CPL is greater than 0 (0 is the most privileged level).
m, An exception 13 fault occurs if CPL is greater than IOPL.
n. The IF bit of the flag register is not updated if CPL is greater than IOPL. The IOPL and VM fields of the flag register are
updated only if CPL = O.
o. The PE bit of the MSW (CRO) cannot be reset by this instruction, Use MOV into CRO if desiring to reset the PE bit.
p. Any violation of privilege rules as applied to the selector operand does not cause a protection exception; rather, the zero
flag is cleared.
q. If the coprocessor's memory operand violates a segment limit or segment access rights, an exception 13 fault (general
protection exception) will occur before the ESC instruction is executed. An exception 12 fault (stack segment limit violation
or not present) will occur if the stack limit is violated by the operand's starting address,
r. The destination of a JMP, CALL, INT, RET or IRET must be in the defined limit of a code segment or an exception 13
fault (general protection violation) will occur.

E-15

INSTRUCTION FORMAT AND TIMING

8.2 INSTRUCTION ENCODING

8.2.1 Overview

All instruction encodings are subsets of the general
instruction format shown in Figure 8-1. Instructions
consist of one or two primary opcode bytes, possibly
an address specifier consisting of the "mod rim"
byte and "scaled index" byte, a displacement if re­
quired, and an immediate data field if required.

Within the primary opcode or opcodes, smaller en­
coding fields may be defined. These fields vary ac­
cording to the class of operation. The fields define
such information as direction of the operation, size
of the displacements, register encoding, or sign ex­
tension.

Almost all instructions referring to an operand in
memory have an addressing mode byte following
the primary opcode byte(s). This byte, the mod rim
byte, specifies the address mode to be used. Certain

encodings of the mod rim byte indicate a second
addressing byte, the scale-index-base byte, follows
the mod rim byte to fully specify the addressing
mode.

Addressing modes can include a displacement im­
mediately following the mod rim byte, or scaled in­
dex byte. If a displacement is present, the possible
sizes are 8, 16 or 32 bits.

If the instruction specifies an immediate operand,
the immediate operand follows any displacement
bytes. The immediate operand, if specified, is always
the last field of the instruction.

Figure 8-1 illustrates several of the fields that can
appear in an instruction, such as the mod field and
the rim field, but the Figure does not show all fields.
Several smaller fields also appear in certain instruc­
tions, sometimes within the opcode bytes them­
selves. Table 8-2 is a complete list of all fields ap­
pearing in the 80386 instruction set. Further ahead,
following Table 8-2, are detailed tables for each
field.

ITTTTTTTTI TTTTTTTTI modTTTr/m I ssindexbase Id32116181 nonedata32 1 16181 none

? 07 °1 \76532°/\76532°1\ 1\ I
'------...------' T T --...... --- ---r--ooJ

opcode
(one or two bytes)
(T represents an

opcode bit.)

\

"mod rim"
byte

"s-i-b"
byte

register and address
mode specifier

1

address
displacement
(4, 2, 1 bytes

or none)

Figure 8-1. General Instruction Format

Table 8-2 Fields within 80386 Instructions

Field Name Description

w Specifies if Data is Byte or Full Size (Full Size is either 16 or 32 Bits
d Specifies Direction of Data Operation
s Specifies if an Immediate Data Field Must be Sign-Extended
reg General Register Specifier
mod rim Address Mode Specifier (Effective Address can be a General Register)

ss Scale Factor for Scaled Index Address Mode
index General Register to be used as Index Register
base General Register to be used as Base Register
sreg2 Segment Register Specifier for CS, SS, OS, ES
sreg3 Segment Register Specifier for CS, SS, OS, ES, FS, GS
tttn For Conditional Instructions, Specifies a Condition Asserted

or a Condition Negated

Note: Table 8-1 shows encoding of individual instructions.

E-16

immediate
data

(4, 2, 1 bytes
or none)

Number of Bits

1
1
1
3

2 for mod;
3 for rim

2
3
3
2
3

4

INSTRUCTION FORMAT AND TIMING

8.2.2 32-81t Extensions of the
Instruction Set

With the 80386, the 86/186/286 instruction set is
extended in two orthogonal directions: 32-bit forms
of all 16-bit instructions are added to support the 32-
bit data types, and 32·bit addressing modes are
made available for all instructions referencing memo
ory. This orthogonal instruction set extension is ac­
complished having a Default (D) bit in the code seg­
ment descriptor, and by having 2 prefixes to the in­
struction set.

Whether the instruction defaults to operations of 16
bits or 32 bits depends on the setting of the 0 bit in
the code segment descriptor, which gives the de­
fault length (either 32 bits or 16 bits) for both oper­
ands and effective addresses when executing that
code segment. In the Real Address Mode or Virtual
8086 Mode, no code segment descriptors are used,
but a 0 value of 0 is assumed internally by the 80386
when operating in those modes (for 16-bit default
sizes compatible with the 8086/80186/80286).

Two prefixes, the Operand Size Prefix and the Effec­
tive Address Size Prefix, allow overriding individually
the Default selection of operand size and effective
address size. These prefixes may precede any op­
code by1es and affect only the instruction they pre­
cede. If necessary, one or both of the prefixes may
be placed before the opcode bytes. The presence of
the Operand Size Prefix and the Effective Address
Prefix will toggle the operand size or the effective
address size, respectively, to the value "opposite"
from the Default setting. For example, if the default
operand size is for 32-bit data operations, then pres­
ence of the Operand Size Prefix toggles the instruc­
tion to 16-bit data operation. As another example, if
the default effective address size is 16 bits, pres­
ence of the Effective Address Size prefix toggles the
instruction to use 32-bit effective address computa­
tions.

These 32-bit extensions are available in all 80386
modes, including the Real Address Mode or the Vir­
tual 8086 Mode. In these modes the default is al­
ways 16 bits, so prefixes are needed to specify 32-
bit operands or addresses.

Unless specified otherwise, instructions with 8-bit
and 16-bit operands do not affect the contents of
the high-order bits of the extended registers.

~.2.3 Encoding of Instruction Fields

Within the instruction are several fields indicating
register selection, addressing mode and so on. The
exact encodings of these fields are defined immedi­
ately ahead.

E-17

8.2.3.1 ENCODING OF OPERAND LENGTH (w)
FIELD

For any given instruction performing a data opera­
tion, the instruction is executing as a 32-bit operation
or a 16-bit operation. Within the constraints of the
operation size, the w field encodes the operand size
as either one byte or the full operation size, as
shown in the table below.

Operand Size Operand Size
wField During 16-8it During 32-8it

Data Operations Data Operations

0 8 Bits 8 Bits
1 16 Bits 32 Bits

8.2.3.2 ENCODING OF THE GENERAL
REGISTER (reg) FIELD

The general register is specified by the reg field,
which may appear in the primary opcode bytes, or as
the reg field of the "mod rim" byte, or as the rim
field of the "mod rim" byte.

Encoding of reg Field When w Field
Is not Present In Instruction

Register Selected Register Selected
reg Field During 16-8it During 32-81t

000
001
010
011
100
101
101
101

reg

000
001
010
011
100
101
110
111

Data Operations Data Operations

AX EAX
CX ECX
OX EDX
BX EBX
SP ESP
BP EBP
SI ESI
01 EDI

Encoding of reg Field When w Field
Is Present In Instruction

Register Specified by reg Field
During 16-81t Data Operations:

Function of w Field

(whenw = 0) (whenw = 1)

AL AX
CL CX
DL OX
BL BX
AH SP
CH BP
DH SI
BH 01

INSTRUCTION FORMAT AND TIMING

Register Specified by reg Field
During 32-Blt Data Operations

Function of w Field
reg

(whenw = 0) (whenw = 1)

000 AL EAX
001 CL ECX
010 DL EDX
011 BL EBX
100 AH ESP
101 CH EBP
110 DH ESI
111 BH EDI

8.2.3.3 ENCODING OF THE SEGMENT
REGISTER (sreg) FIELD

The sreg field in certain instructions is a 2-bit field
allowing one of the four 80286 segment registers to
be specified. The Sleg field in other instructions is a
3-bit field, allowing the 80386 FS and GS segment
registers to be specified.

2-Blt sreg2 Field

2-Blt
Segment

sreg2Fieid
Register
Selected

00 ES
01 CS
10 SS
11 OS

3-Bit sreg3 Field

3-Bit
Segment

sreg3 Field
Register
Selected

000 ES
001 CS
010 SS
011 DS
100 FS
101 GS
110 do not use
111 do not use

E-18

8.2.3.4 ENCODING OF ADDRESS MODE

Except for special instructions, such as PUSH or
POP, where the addressing mode is pre-determined,
the addressing mode for the current instruction is
specified by addressing bytes following the primary
opcode. The primary addressing byte is the "mod
rIm" byte, and a second byte of addressing informa­
tion, the "s-i-b" (scale-index-base) byte, can be
specified.

The s-i-b byte (scale-index-base byte) is specified
when using 32-bit addressing mode and the "mod
rIm" byte has rIm = 100 and mod = 00,01 or 10.
When the sib byte is present, the 32-bit addressing
mode is a function of the mod, ss, index, and base
fields.

The primary addressing byte, the "mod rIm" byte,
also contains three bits (shown as TTT in Figure 8-1)
sometimes used as an extension of the primary op­
code. The three bits, however, may also be used as
a register field (reg).

When calculating an effective address, either 16-bit
addressing or 32-bit addressing is used. l6-bit ad­
dressing uses 16-bit address components to calcu­
late the effective address while 32-bit addressing
uses 32-bit address components to calculate the ef­
fective address. When l6-bit addressing is used, the
"mod rIm" byte is interpreted as a l6-bit addressing
mode specifier. When 32-bit addressing is used, the
"mod rIm" byte is interpreted as a 32-bit addressing
mode specifier.

Tables on the following three pages define all en­
codings of all 16-bit addressing modes and 32-bit
addressing modes.

INSTRUCTION FORMAT AND TIMING

Encoding of 16-bit Address Mode with "mod rIm" Byte

mod rIm Effective Address mod rIm Effective Address

00000 OS:[BX+Slj 10000 OS:[BX+SI+d16)
00001 OS:[BX+OI] 10001 OS:[BX+01+d16]
00010 SS:[BP+SI] 10010 SS:[BP + SI+ d16]
00011 SS:[BP+OI] 10011 SS:[BP+01+d16]
00100 OS:[SI] 10100 OS:[SI+d16]
00101 OS: [01] 10101 OS: [01 + di6)
00110 OS:d16 10110 SS:[BP+d16]
00111 OS: [BX] 10111 OS:[BX+d16]

01000 OS: [BX + SI + d8] 11000 register-see below
01001 OS: [BX + 01 + dB) 11001 register-see below
01010 SS: [BP + SI + d8] 11010 register-see below
01011 SS:[BP+01+d8] 11 011 register-see below
01100 OS:[SI+d8) 11100 register-see below
01101 OS:[01+d8) 11 101 register-see below
01110 SS:[BP+d8) 11 110 register-see below
01 111 OS:[BX+d8) 11 111 register-see below

Register Specified by rIm
During i6-Bit Data Operations

mod rIm
Function of w Field

(whenw=O) (when w = 1)

11000 AL AX
11001 CL CX
11010 OL OX
11 011 BL BX
11100 AH SP
11 101 CH BP
11 110 OH SI
11 111 BH 01

Register Specified by rIm
During 32-Bit Data Operations

mod rIm
Function of w Field

(whenw=O) (when w = 1)

11000 AL EAX
11001 CL ECX
11010 OL EOX
11 011 BL EBX
11 100 AH ESP
11 101 CH EBP
11 110 OH ESI
11 111 BH EOI

E-19

INSTRUCTION FORMAT AND TIMING

Encoding of 32-bit Address Mode with "mod rIm" byte (no "s-i-b" byte present):

mod rIm Effective Address mod rIm Effective Address

00000 DS:[EAX] 10000 DS: [EAX + d32]
00001 DS:[ECX] 10001 DS: [ECX + d32]
00010 DS:[EDX] 10010 DS:[EDX+d32]
00011 DS:[EBX] 10011 DS: [EBX + d32]
00100 s-i-b is present 10100 s-i-b is present
00101 DS:d32 10101 SS:[EBP+d32]
00110 DS:[ESIl 10110 DS: [ESI + d32]
00111 DS:[EDIl 10 111 DS:[EDI+ d32j

01000 DS:[EAX+d8] 11000 register-see below
01001 DS:[ECX+d8] 11 001 register-see below
01010 DS:[EDX+d8] 11010 register-see below
01 011 DS:[EBX+d8] 11 011 register-see below
01100 s-i-b is present 11100 register-see below
01101 SS:[EBP+d8] 11 101 register-see below
01 110 DS: [ESI + d8] 11 110 register-see below
01 111 DS:[EDI+ d8] 11 111 register-see below

Register Specified by reg or rIm
during 16-Bit Data Operations:

mod rIm
function of w field

(whenw=O) (whenw=1)

11000 AL AX
11001 CL CX
11010 DL DX
11 011 BL BX
11100 AH SP
11 101 CH BP
11 110 DH SI
11 111 BH DI

Register Specified by reg or rIm
during 32-Bit Data Operations:

mod rIm function of w field

(whenw=O) (whenw=1)

11000 AL EAX
11001 CL ECX
11 010 DL EDX
11 011 BL EBX
11 100 AH ESP
11 101 CH EBP
11 110 DH ESI
11 111 BH EDI

E-20

INSTRUCTION FORMAT AND TIMING

Encoding of 32-bit Address Mode ("mod rIm" byte and "s-i-b" byte present):

mod base Effective Address

00000 DS: [EAX + (scaled index)]
00001 OS: [ECX + (scaled index)]
00010 OS:[EDX + (scaled index)]
00011 DS: [EBX + (scaled index)]
00100 SS: [ESP + (scaled index)]
00101 OS: [d32 + (scaled index)]
00110 OS: [ESI + (scaled index)]
00111 OS:[EDI + (scaled index)]

01000 DS: [EAX + (scaled index) + dB]
01001 DS: [ECX + (scaled index) + dB]
01010 DS: [EDX + (scaled index) + dB]
01011 DS:[EBX + (scaled index) + dB]
01100 SS; [ESP + (scaled index) + dB]
01 101 SS: [EBP + (scaled index) + dB]
01110 DS: [ESI + (scaled index) + dB]
01 111 DS: [EDI + (scaled index) + dB]

10000 DS: [EAX + (scaled index) + d32]
10001 DS: [ECX + (scaled index) + d32]
10010 OS: [EDX + (scaled index) + d32]
10011 DS: [EBX + (scaled index) + d32]
10100 SS: [ESP + (scaled index) + d32]
10101 SS: [EBP + (scaled index) + d32]
10110 OS: [ESI + (scaled index) + d32]
10111 DS: [EDI + (scaled index) + d32]

NOTE:
Mod field in "mod rim" byte; 55, index, base fields in
"s-i-b" byte.

E-21

ss Scale Factor

00 x1
01 x2
10 x4
11 xB

index Index Register

000 EAX
001 ECX
010 EOX
011 EBX
100 no index reg"'
101 EBP
110 ESI
111 EDI

"IMPORTANT NOTE:
When index field is 1 00, indicating "no index register," then
ss field MUST equal 00. If index is 100 and ss does not
equal 00, the effective address is undefined.

INSTRUCTION FORMAT AND TIMING

8.2.3.5 ENCODING OF OPERATION DIRECTION
(d) FIELD

In many two-operand instructions the d field is pres­
ent to indicate which operand is considered the
source and which is the destination.

d Direction of Operation

0 Register/Memory <- - Register
"reg" Field Indicates Source Operand;
"mod rIm" or "mod ss index base" Indicates
Destination Operand

1 Register <- - Register/Memory
"reg" Field Indicates Destination Operand;
"mod rIm" or "mod ss index base" Indicates
Source Operand

8_2.3.6 ENCODING OF SIGN·EXTEND (8) FIELD

The s field occurs primarily to instructions with im­
mediate data fields. The s field has an effect only if
the size of the immediate data is 8 bits and is being
placed in a 16-bit or 32-bit destination.

Effect on Effect on
Immediate Data8 Immediate Data 16132

None None

1 Sign-Extend Data8 to Fill None
16·Bit or 32-Bit Destination

8.2.3.7 ENCODING OF CONDITIONAL TEST
(tttn) FIELD

For the conditional instructions (conditional jumps
and set on condition), tttn is encoded with n indicat­
ing to use the condition (n = 0) or its negation (n = 1),
and ttt giving the condition to test.

Mnemonic Condition tttn

0 Overflow 0000
NO No Overflow 0001
BINAE Below/Not Above or Equal 0010
NB/AE Not Belowl Above or Equal 0011
E/Z Equal/Zero 0100
NE/NZ Not Equal/Not Zero 0101
BE/NA Below or Equal/Not Above 0110
NBE/A Not Below or Equal/ Above 0111
S Sign 1000
NS Not Sign 1001
PIPE Parity/Parity Even 1010
NP/PO Not Parity/Parity Odd 1011
LlNGE Less Than/Not Greater or Equal 1100
NL/GE Not Less Than/Greater or Equal 1101
LE/NG Less Than or Equal/Greater Than 1110
NLE/G Not Less or Equal/Greater Than 1111

8.2.3.8 ENCODING OF CONTROL OR DEBUG
OR TEST REGISTER (eee) FIELD

For the loading and storing of the Control, Debug
and Test registers.

When Interpreted as Control Register Field

eeeCode Reg Name

000 CRO
010 CR2
011 CR3

Do not use any other encoding

When Interpreted a8 Debug Register Field

eeeCode Reg Name

000 ORO
001 DR1
010 DR2
011 DR3
110 DR6
111 DR7

Do not use any other encoding

When Interpreted a8 Test Register Field

eeeCode Reg Name

110 TR6
111 TR7

Do not use any other encoding

E-22

