

iNA 960 Architectural Reference Manual
122194-001

Parameter Code

Parameter Length

Parameter Value

11000011

2

result of the checksum algorithm

The User Data contains the data of the TSDU being transmitted. The length of

this field is unrestricted.

5.8 CONFORMANCE

The conformance information in Chapter 4 (or in DP 8073) is applicable. In addition,

implementation claiming conformance must specify whether or not the connection­

less data transmission option is supported.

5-15

iNA 960 Architectural Reference Manual
122194-001

CHAPTER 6

NETWORK MANAGEMENT

6.1 INTRODUCTION

The Network Management "Layer" supplies a network with planning, operation and

maintenance facilities.· (Network management is actually implemented as a

function distributed over "other" layers and for this reason, it is treated as a

"facility".) The planning capability gathers network usage information to help the

user determine when to expand the network. Operation deals with normal, day to

day network functions, such as initialization, termination, monitoring and

performance optimization. Maintenance deals with detection, isolation, ·amputation

and repair of network faults. Many functions can be performed both on local and

remote nodes.

The Network Management Facility has an interface to every network layer in the

architecture. Each layer provides the NMF with an interface in which the N!vtF can

access the layer's internal database.

The NMF can perform operations 'on remote nodes. To do this, it uses the services

provided by the "other" layers (Transport, Network and Data Link Layers) to

communicate with the NMF on the remote node, which performs the desired

operation at that node.

6.1.1 Purpose of This Section

This is an architectural specification, not a NMF implementation specification. The

purpose of this chapter is to describe the essential functions, interfaces and

algorithms which are necessary to implement a NMF module which will execute

properly on the various layers at the local node and communicate properly with the

NMF residing on remote nodes. This document does not describe or mandate a

particular implementation strategy, since communication software can be imple­

mented in a wide variety of execution environment.

6-1

iNA 960 Architectural Reference Manual
122194-001

6.2 GOALS AND NON-GOALS OF NMF ARCHITECTURAL DESIGN

The goals of the NMF design are:

Planning:

Capture usage statistics to help plan network expansion. Statistics on the

various layers will be maintained by the layer itself and will be available to

users via an interface with the NMF.

Operation:

The NMF should capture enough information to evaluate the settings of

parameters affecting network performance. The NMF provides facilities

to inspect and adjust these parameters to determine their effect on

network performance. This allows users to monitor the operation of each

layer.

Maintenance:

Part of the 'maintenance' goals of the NMF are present above in the

section dealing with operation monitoring. In addition, the NMF provides

features to determine the presence of hosts and the viability of their

connection to the network. A facility to down-line dump remote systems is

present. Error conditions or Events occurring in each layer are noted by

the NMF Event Logger and can be displayed at the local and remote nodes.

Distributed Management:

Whatever facilities the NMF provides on the local node, the NMF can

provide the same facility on a remote node. Enquiries into the state of the

network can be made from any system on the network. There is no concept

of a central network· control station.

responsibility of every station.

Initialization:

Network management is the

NMF provides initialization and remote loading facilities. This allows

systems with no local mass storage to be booted by a remote node. The

facility provided is general enough to service a wide variety of systems.

6-2

iNA 960 Architectural Reference Manual
122194-001

The NMF has the following non-goals:

Security:

NMF does not support the concept of a super user. The facility available

to all users is the same. NMF does not provide safe-guards or protection

against malicious users.

6.3 FUNCTIONAL OVERVIEW

The Network Management Facility supplies a network with planning, operation and

maintenance facilities. The planning capability gathers network usage information

to help the user determine when to e~pand the network. Operation deals with

normal, day to day network functions, such as initialization, termination, monitoring

and performance optimization. Maintenance deals with detection, isolation, ampu­

tation and repair of network faults. Many functions can be performed both on local

and remote nodes.

The functions needed to implement the planning, operation and maintenance goals

over lap considerably. For instance, both planning and maintenance need access to

the layer data ,bases, so the data base access functions are common to both.

Similar ly, operation and maintenance share a requirement to be able to remotely

bootstrap a node. Therefore, the functions provided by the Network Management

Facility are divided into groups of similar functions instead of being grouped

according to their respective goals.

The NMF provides layer management, echo testing, limited debugging facilities and

the ability to down-line load and up-line dump a remote system.

Layer management deals with manipulating the internal data base of a layer. NMF

can examine and modify network counters of lower layers that indicate how the

network is performing. It can examine and change the value of network parameters.

Data base operations can be performed on the local node or a remote node. If

performed on a remote node, the NMF use~ the Transport Layer to create a virtual

connection. to the NMF in the remote node. The NMF in the remote node then

performs the desired function.

6-3

iNA 960 Architectural Reference Manual
122194-001

As mentioned above, an echo facility is provided. Using this facility, the host can

determine if a node is present on the network or not, test the communication path

to that node and determine the functionality of the remote node. NMF transmits a

packet to the remote node, then listens for that node to echo it.

The NMF provides the host with the ability to read or set memory of any host

present on the network. This feature is provided as an aid to debugging. In the case

of an operation to be performed on a remote node, the NMF transmits a message via

the local Transport Layer to the NMF residing on the remote host. The remote NMF

carries out the command.

NMF has the facility to record events which reflect a problem with the communica­

tion hardware or software. When an error occurs, the event, along with relevant

information, is written into a log file. NMF has the facility to record events that

occur locally as well as those that occur on remote nodes. Recording events may

help to maintain the network, recover from failures, and plan for the future.

NMF can down-line load any system present on the network. A simple data link

level protocol is used to ensure reliability. This facility can be used to load data

bases; to boot systems without local mass storage; to boot a set of nodes remotely,

thus ensuring that they have the same version of software; etc.

Up-line dumping is somewhat similar to down-line loading. Up-line dumping can be

initiated by a remote node only. The remote node issues a 'dump command' and the

target node responds with a dump response packet containing the memory image

requested. In this case too, the target node utilizes the raw data link facilities.

6.4 LAYER MANAGEMENT

The NMF needs access to the data base of all other layers so that it can provide

planning and maintenance aids. The element of a layer's internal data base is

termed an object. The NMF can read, read and clear, and set an object in a layer's

data base.

6-4

iNA 960 Architectural Reference Manual
122194-001

There are four types of objects; Parameters, Counters, Statistics and Values.

Parameters adjust layer operation. They may be read and set, and change value only

through the set operation. Counters record the number of times an event occurs.

They are unsigned integers which either wrap around to zero on overflow or 'stick' at

infinity. They may be read, and are cleared to 0 by the 'Read_and _Clear' operation.

Statistics are time-averaged measures of some facet of system operation. They

may be" read. Values are read-only numbers which are not parameters, counters or

statistics. The following are examples of several objects in various layers:

Examples of Data Link Objects:

Number of packets transmitted

Number of packets received

Number of CRe errors

Examples of Network Objects:

Number of networks

List of network addresses

Examples of Transport Objects:

Number of existing connections

Retransmission time of any connection

Examples of Session Objects:

Number of process names recognized

Number of session virtual circuits open

Examples of Application Objects:

Number of existing file connections

Characteristics of various terminals in use

6.4.1 Layer Management Interfaces

The NMF has to access the internal data base of every other layer. Thus, each layer

has to provide an interface in which the NMF can access its data base. N\I\F should

be able to read any element of a layer's data base, set any element of a layer's data

6-5

iN A 960 Architectural Reference Manual
122194-001

base to a desired value and read and clear any element of a layer's data base. 'Read

and Clear' is an indivisible operation provided to ensure that no race conditions

exist. Each layer provides the three interfaces to the NMF described below.

Note that in the following definitions the term 'layer' refers to an entity within the

layer. For instance, a node might have two data links. In this case, 'layer' would

also specify which of the two data links are being- referenced.

Layer _Read (Object, Modifier, Buffer _Pointer)

Function: The value of Object is placed at Buffer_Pointer

Where:

'Layer' is an entity within anyone of the layers with which the NMF

interfaces with - DLL, NL, TCL, SL, AL.

'Object' is the identifying number of a Network Management object.

'Modifier' is a number to be used in conjunction with Object to locate the

particular value to read. The meaning of modifier can be different for

different objects.

'Buffer _Pointer' is a pointer that points to the buffer in which to place the

returned data.

Returns a value indicating one of the following:

Successfully completed,

Not done,

Bad parameter.

Layer _Read_and _Clear (Object, Modifier, Buffer ~ Pointer)

Function: The value of Object is placed at Buffer_Pointer and the value is then

set to O. This is to be considered as one indivisible operation.

6-6

iNA 960 Architectural Reference Manual
122194-001

Where:

'Layer' is an entity within anyone of the layers with which the NMF

interfaces - DLL, NL, TCL, SL, AL.

'Object' is the identifying number of a Network Management object.

'Modifier' is a number to be used in conjunction with Object to locate the

particular value to read. The meaning of modifier can be different for

different objects.

'Buffer _Pointer' is a pointer that points to the buffer in which to place the

returned data.

Returns a value indicating one of the following:

Successfully Completed

Not Done

Bad Parameter

Layer_Set (Object, Modifier, Value_Pointer)

Function: Object is set to the value contained in Value_Pointer

Where:

'Layer' is an entity within anyone of the layers with which the NMF

interfaces - DLL, NL, TCL, SL, AL.

'Object' is the identifying number of a Network Management object.

'Modifier' is a number to be used in conjunction with Object to locate the

particular value to read. The meaning of modifier can be different for

different objects.

'Value Pointer' is a pointer that points to the buffer which contains the

value to be assigned to Object.

6-7

iNA 960 Architectural Reference Manual
122194-001

Returns a value indicating one of the following:

Successfully Completed

Not Done

Bad Parameter

6.4.2 Other Interfaces

The Network Management Facility (NMF) uses the services provided by the other

layers to communicate with the NMF residing on remote nodes. However, to the

other layers, the NMF is just another user of its services and that layer does not

have to provide the NMF with any special services. The NMF uses the standard

functions which that layer provides.

6.4.3 Layer Management on Remote Nodes

To carry out an operation on a remote node, the NMF uses the services of the

Transport (Control) Layer (TeL). It has to establish a connection with the NMF on

the remote node, which (the remote node) will carry out the operation. The process
. .

on the remote node which carries out the command is termed the Remote Executor.

The NMF first does an Active_Open. The remote transport address is the transport

address of the Remote Executor (see illustration below). The Remote Executor

always has an unspecified Passive_Open with a local TSAP id of 0003. A connection

is established between the Active _Open on the local node and the Passive _Open on

the Remote Executor. The NMF formats a command block, transmits it to the

Remote Executor and waits for the response block from the Remote Executor.

REMOTE EXECUTOR I.~--:.._TC!""'L_

t
",-_LO_C_AL_N_M_L _.!"---I.~I TCL

6-8

iNA 960 Architectural Reference Manual
122194-001

The local NMF then transmits the command. The Remote Executor executes the

command and returns a response. On receipt of the response, both of the NMFs

close the virtual circuit. The formats of the command and response are shown

below:

declare r b str ucture (

TYPE

NUMBER

OBJECT

MODIFIER

LENGTH

VALUE

byte,

byte,

word,

word,

word,

(LENGTH) byte);

repeated NUMBER times

COMMAND BLOCK FOR READ, SET, READ_AND_CLEAR BETWEEN LOCAL AND

REMOTE NMFs

'TYPE' is the function code for this request:

o - READ function

1 - READ AND CLEAR function - -
2 - SET function

'NUMBER' is the number of objects in this request.

The following fields are repeated for each of NUMBER 0 bjects:

'OBJECT' is the identifying number of a Network Management Object.

'MODIFIER' is a number to be used in conjunction with OBJECT to locate the

particular value to return. The interpretation of MODIFIER can be different for

different OBJECTS. The values that MODIFIER can take are listed along with the

Network Management Objects in the document 'NMF Objects and Events'.

'LEN GTH' is the length in bytes of the VAL UE field. In the case of READ and

READC commands, this field should contain a O.

6-9

iNA 960 Architectural Reference Manual
122194-001

'VALUE' is the new value for OBJECT on a SET command. This field is ignored by

NMF for READ and READ AND CLEAR commands.

The response transmitted by the remote NMF is similar to the above format. The

format of the response is illustrated by the following PLM86 structure:

declare response_block structure (

NUMBER byte,

OBJECT word,

MODIFIER

LENGTH

VALUE

word,

word,

(LENGTH) byte);

repeated NUMBER times

The fields in the response block illustrated above have the same meaning as those in

the command block. If an object in the command block is illegal, it is not present in

the response block. If the TY PE in the command block was READ AND CLEAR, and

the object is not clearable, it is again not present in the response block. In the case

of a SET command, the remote N\t1F attempts to set the value of the OBJECT to

that specifi~d in the VALUE field and then read the value of the OBJECT into the

response block. Thus, if the object is not settable or it is not possible to set the

OBJECT to the value specified in the value field, the VALUE in the response block

will be different from that in the command block.

In a NMF implementation, the process that accepts commands from remote NMFs,

the Remote Executor, should follow the following outline:

Do forever;

1. Issue unspecified Passive Open. The local TSAP id is 0003H. The remote

host id is unspecified.

2. Accept any connection.

3. Receive a message over the virtual circuit.

4. If message length is • 100 bytes, then go to step 8.

5. If error code is returned in step 3, then go to step 8.

6. Fill a buffer with tne response. The size of this buffer is 200 bytes.

7. Transmit the buffer to the remote N\1F.

6-10

iNA 960 Architectural Reference Manual
122194-001

8. Close the virtual circuit.

End do.

If there are two command blocks to be transmitted, NMF has to establish a virtual

circuit twice since after processing the first command block, the remote NMF

closes the virtual circuit. The overhead involved in doing this is tolerated since

frequent transmission of command blocks is not anticipated.

The NMF process which transmits the commands follows the following algorithm:

1. Issue an Active_Open. The remote host id is that of the remote node and

the remote TSAP id is 0003H.

2. Wait a finite time for the connection to get established.

3. If timeout occurs in step 2, then go to step 7.

4. Transmit the command block in the format described. The size of this

block must be less than 100' bytes.

5. Wait a finite time for response buffer. The maximum size of this buffer is

200 bytes.

6. If a timeout occurs in step 5, then go to step 7.

7. Close the virtual circuit.

6.5 DOWN-LINE LOADING

The NMF provides the facility of down-line loading remote systems. This facility

can be used for various reasons. Stations without local mass storage can use it to

boot themselves. A station can force a remote station to boot (or re-boot) itself.

This facility could be used so that a set of nodes boot from the same version of

software. It could also be used to load a data base from (or to) a remote node.

A down-line loading operation requires the cooperation of two stations - the target

node, the node which is to be loaded; and the executor node, the node which supplies

the target node with the required data. A simple protocol is followed by the two

stations. The target node is usually in a state where it can only use minimal data

link facilities (it may be the communication system that is being loaded). The

protocol used makes use of the raw data link facilities.

6-11

iNA 960 Architectural Reference Manual
122194-001

The process which runs on the target station is termed the Boot Consumer (Be) and

the process on the executor station is called the Boot Server (BS). The two

processes together provide a service which is general enough to be used for purposes

other than booting; the names assigned to them are slightly misleading.

The boot consumer transmits requests to the boot server and then waits for the boot

server to respond. The response from the boot server would typically consist of

some data and some control information. The control information informs the boot

'consumer as to how the data is to be interpreted and whether more data is to follow.

A typical boot sequence would consist of the boot consumer issuing a request for the

first block of data, receiving a packet from the boot server, processing the packet

and then issuing a request for the next block of data. This sequence of events

continues until the loading operation is complete.

The protocol, followed by the two processes, can be broken down into three phases:

Initiation, Connection Establishment and Software Loading.

6.5".1 The Initiation Phase

The initiation phase can be started by any node on the network, including the target

node i tse If.

A remote node can start the initiation phase by transmitting a packet containing the

'Do Remote Load' command to the target station. Included in this command is the

class code, a 16 bit value that indicates what exactly the target node has to load.

The boot consumer on the target node responds with a 'Do Remote Load' response

packet and then proceeds to the next phase. The formats of the 'Do Remote Load'

command and response packets are illustrated below.

The BC on the target node can initiate the loading operation itself. It may be

programmed to initiate the operation at system reset time, or at any other time

that it desires.

6-12

iNA 960 Architectural Reference Manual
122194-001

Do Remote Load Command:

Destination Address

Source Address

LLC PDU Length

DSAPID

SSAP ID

Control

Reserved

Command

Class Code

Padding

Do Remote Load Response:

Destination Address

Source Address

LLC PDU Length

DSAPID

SSAP ID

Control

Reserved

Command

Padding

6 bytes

6 bytes

2 bytes

1 byte

1 byte

1 byte

1 byte

1 byte

2 bytes

6 bytes

6 bytes

2 bytes

1 byte

1 byte

1 byte

1 byte

1 byte

6-13

= 5

= NML SAP

= NML SAP

= OC3H (MUI)

= 0

= 3H (Do remote load cmd)

= A 16 bit value that the target node is to

use when requesting boot from the boot

server

To meet minimum packet size

= 5

= NML SAP

= NML SAP

= OC3H (MUI)

= a
= 01H (Do remote load resp)

To meet minimum packet size

iNA 960 Architectural Reference Manual
122194-001

6.5.2 The Connection Establishment Phase

The Connection Establishment phase consists of the BC issuing a Multicast bootstrap

request message via the data link. The multicast addresses used by Intel products is

01 AA 00 FF FF FF. Included in the request message is the class code, denoting the

type of data that the BC needs. The class code is a two byte field. For Intel

systems, the most significant byte specifies the type of communication system while

the least significant byte specifies the type of host.

If present, the Boot Server(s) checks to see if it can satisfy the request (it has the

files required by the class code and the resources to satisfy the request). If so, it

responds with a bootstrap acknowledge message. If it cannot satisfy the request or

is not present, no acknowledge message is transmitted. If the Boot Server(s) does

not respond within a fixed time period (one second), the BC reissues the request. It

tr ies three times before aborting the process.

The boot consumer can get more than one boot acknowledge packet since there can

be more than one boot server present on the network willing to boot the node. The

boot consumer notes the source address of the first boot acknowledge packet and

directs all further requests to this address.

The protocol observed by the boot consumer in the connection establishment phase

is presented below:

1. Tries = 0

2. Tries = Tries + I

3. If Tries = 4, then return (Error - no response received)

4. Transmit packet containing boot request and class code

5. Wait one second for a response packet

6. If timeout in step 5, then go to step 2

7. If not boot acknowledge packet, then go to step 2

8. Expected response has been received. Note the source id of the boot

acknowledge packet. Ignore any boot acknowledge packets that may arrive

later.

6-14

iNA 960 Architectural Reference Manual
122194-001

The format of the boot request and boot acknowledge packets is illustrated below:

Boot Request:

Destination Address

Source Address

LLC PDU Length

DSAPID

SSAP ID

Control

Reserved

Command

Class Code

Padding

Boot Response:

Destina tion Address

Source Address

LLC PDU Length

DSAPID

SSAP ID

Control

Reserved

Command

Padding

6 bytes

6 bytes

2 bytes

1 byte

1 byte

1 byte

1 byte

1 byte

2 bytes

6 bytes

6 bytes

2 bytes

1 byte

1 byte

1 byte

1 byte

1 byte

6-15

= 7

= NML SAP

= NML SAP

= OC3H (MUI)

= 0

= 4 H (Boot request)

= A 16 bit value that contains the code of

the requesting device

To meet minimum packet si?e

= 5

= NMF SAP

= NMF SAP

= OC3H (MUI)

= 0

= 5H (Boot response)

To meet minimum packet size

iNA 960 Architectural Reference Manual
122194-001

6.5.3 The Loading Phase

When a connection has been established between the boot consumer process and the

boot server process, the actual loading operation begins.

The protocol allows any number of modules to be loaded. The format of a module is

shown below:

Command

Load Addr ess

Length

Execution Address

Memory Image

1 byte: Indicates if the module is to be executed and if

there are more modules to be loaded.

Bit 0=1 indicates there is another module to be loaded. Bit

1 =1 indicates that the execution address is to be called.

4 bytes: Specifies the first address where the data is to be

placed.

2 bytes: Specifies the length of the memory image data.

4 bytes: Specifies the execution address of the loaded

memory image.

The memory image to be loaded. It can be between 0 and

2**16 - 1 bytes long.

From the class code, the boot server knows exactly which modules the boot server

. needs. The boot server builds up a file of the following format:

< Header 2 > < Module 1 > < Header 2 > < Module 2 > ••• < Header n > < Modulen >

I Block 0 I Block 1 I I. Block m I

The boot server breaks the file up into an ar bitrary num ber of blocks of ar bi trary

size. The size of each block should, however, be small enough to fit in a boot

response packet (illustrated in section 6.9.5) •. Upon receipt of a boot request for any

block x, the boot server merely transmits block x to the boot consumer.

6-16

iNA 960 Architectural Reference Manual
122194-001

The boot consumer transmits requests for blocks of data. It waits one second for

the boot server to transmit the data. If no response is received from the boot

server, the BC retransmits the request. It makes three attempts before aborting the

process. Upon receipt of a response from the BS, it processes the response and then

issues a request for the next block of data.

The header of each module informs the BC of the length of the memory image of

the module and the location where the module is to be placed. If the module header

indicates that the module is to be executed, then the execution address is called as a

subroutine. If the module indicates that another module is to follow, then after the

current module has been received, the BC continues with its protocol to obtain the

next module.

The detailed algorithm that the BC follows is presented below. To increase the

readability of the algorithm, it has been broken up into three subroutines.

The var iables used in the three subroutines are:

Block number

Buf_ data_length

Buf address

Last buffer

Status

- The expected block number of data from the boot

server.

- The length of the data in the receive buffer.

- The address of the receive buffer.

- If true, then the present buffer is the last one for the

current module.

- Can take three values: OK; No response from boot

server; and End of file.

Loading_phase: procedure;

/*

*/

This model uses two buffers, one to store the module header and another to

store received packets from the boot server.

Block number = 0; / * Length of data in receive buffer * /
Buf_Data_Length = 0; /* Length of data in receive buffer */

6-17

iNA 960 Architectural Reference Manual
122194-001

LO: Last_buffer = false;

Status = Read_info (11 bytes, into module_header _buf);

/ * Read the header fields of a module * /

If Status,. OK then return (Error - Status);

Status = Read_info (mod header _ buf.length, mod_header __ buf.load _ addr);

/ * Read the memory image starting at location specified in mod header * /

If status ,. OK then return (Error - Status);

If mod header buf.ervlD =. Execute then call mod_header _ buf.exec _ addr;

/ * if the module is to be immediately executed, then execute it * /

If mod _ hea"der _ buf.cmd =. More, then go to LO;

/ * If another module is to follow, then continue with the protocol *!

Return (OK - Loading complete)

End loading_phase;

Read-info:procedure (Number_bytes, Starting_loc);

/*

*/

Receives and stores 'number _bytes' bytes from boot server and stores them

starting at location 'starting_Ioc'.

Do while number _of bytes, • 0;

/ * there are more bytes to be stored * /

if BUF _data_len = 0, then

/* Buffer is empty, get next block of data from boot server*/

6-18

iNA 960 Architectural Reference Manual
122194-001

if (Status := Get_buffer) , • OK then return (Status);

/*
Buf _data_len bytes have been received and stored at Buf _address

*/

Bytes_to _move = min (Number _bytes, Buf _ da ta _len);

call move (starting_Ioc, Buf _address, bytes_to _move);

Number _bytes = Number _bytes - Bytes_to _move;

Buf _data_len = Bu(data_len - Bytes to_move;

Starting_Ioc = Starting_Ioc + Bytes_to _ move;

Buf _address = Buf _address + Bytes . to_move;

end while:

return (OK - 'Number _bytes' read and stored at 'Starting_Ioc');

end Read_info;

Get _ buffer:procedure;

/*
Receives a packet from the BS for the next block of data

*/
If Last_buffer, then return (End _of_file);

LO: Tries = 0;

/*

Tries - Tries + 1;

If Tries = 4, then return (Error - No response from boot server);

Transmit boot request packet to boot server for 'Block_number' block packet

Wait for 1 second;-

If timeout, then go to LO;

If received packet not for 'Block number' block, then go to LO;

Packet for block 'Block number' has been received from boot server

*/
If received packet contains boot end of data response

then Last _buffer = True;

Buf _address = Address of first byte of data in received packet;

Buf _data_len = length of data in the received packet;

6-19

iNA 960 Architectural Reference Manual
122194-001

Block number = Block_number + 1; / * The next expected block number * /
return (OK);

end Get buffer

Note that modules that are executed immediately can access data from the boot

server by using the procedure 'Read_info'. The parameters' for this procedure are

the starting address of the location at which the received data is to be placed and

the number of bytes of data that are required. If the latter parameter is set to

infinity, then READ info continues to place received data from the boot server until

it receives a packet from the boot server containing the 'end of data' command.

The above feature allows modules to get at data in a different format than the boot

module format described earlier. Using this feature, it is possible to first load a

Loader. The Loader begins execution and uses the procedure 'Read_info' to receive

data coming over the net and interprets the data in any way that it likes.

The formats of the various packets used in the loading phase are presented below:

Boot Data Request:

Destination Address 6 bytes

Source Address 6 bytes

LL C PO U Length 2 bytes = 7

DSAPID 1 byte = NMFSAP

SSAP 10 1 byte = NMFSAP

Control 1 byte = OC3H (MUI)

Reserved 1 byte = 0

Command 1 byte = 6H (Boot data request)

Block 2 bytes = The block number of the boot file that

is requested.

Padding To meet minimum packet size

6-20

iNA 960 Architectural Reference Manual
122194-001

Boot Data Response:

Destina tion Address 6 bytes

Source Address 6 bytes

LLC PDU Length 2 bytes

DSAPID 1 byte

SSAP ID 1 byte

Control 1 byte

Reserved 1 byte

Command 1 byte

Block 2 bytes

Data n Bytes

Padding

Boot End-of-Data Response:

Destina tion Address 6 bytes

Source Address 6 bytes

LLC PDU Length 2 bytes

DSAPID 1 byte

SSAP ID 1 byte

Control 1 byte

Reserved 1 byte

Command 1 byte

Block 2 bytes

6-21

=
=
=
=
=
=
=

=

=
=
=
=
=
=
=

Length of data field + 7

NMF SAP

NMFSAP

OC3H (MUI)

o
7H (Boot data response)

The block number of the boot file that

is contained in the data field.

The command fields and data to be sent

To meet minimum packet size

Length of data field + 7

NMF SAP

NMF SAP

OC3H (MUI)

0

2H (Boot end of data resp.)

The block number of the boot file that

is contained in the data field

iNA 960 Architectural Reference Manual
122194-001

Data

Padding

6.6 ECHO SERVICE

n Bytes = The command fields and data to be sent

To meet minimum packet size

The echo service is used to determine the presence of a node on a network, the

communication path to the remote node, to ascertain the viability and functionality

of the remote host and to determine the class code of the remote station.

On receipt of the echo command, the NMF generates an echo response packet. The

formats of these packets are illustrated below. The NMF copies the data field from

the command packet to the data field of the response packet. It is up to NMF to

copy as much of the data from the command packet into the response packet as

possible. Also included in the response packet is the class code which identifies the

type of node and the software that is running.

The echo response packet should be generated immediately since the remote NMF

only waits a small finite time for it.

Echo Command:

Destination Address 6 bytes

Source Address 6 bytes

LLC PDU Length 2 bytes = 7

DSAPID 1 byte = NMF SAP

SSAP ID 1 byte = NMF SAP

Control I byte = OC3H (MUI)

Reserved 1 byte = 0

Command 1 byte = 8H (Echo Command)

Data x bytes = x bytes of data

Padding To meet minimum packet size

6-22

iNA 960 Architectural Reference Manual
122194-001

Echo Response:

Destina tion Address

Source Address

LLC PDU Length

DSAPID

SSAP ID

Control

Reserved

Command

Class Code

Data

Padding

6 bytes

6 bytes

2 bytes

1 byte

1 byte

1 byte

I byte

1 byte

2 bytes

y Bytes

6.7 UP-LINE DUMPING AND RESET

=

=

=

=

=
=

9

NMFSAP

NMFSAP

OC3H (MUI)

o
9H (Echo response)

The code that identifies the type of

station and the software running on it

= The same data as in the command

(y , =x)

To meet mimimum packet size

The NMF provides the up-line dumping facility to enable a node to get a dump of the

memory of a remote node.

On receipt of the dump command, the NMF generates a dump response packet. The

formats of these two packets are illustrated below. NMF provides a dump of the

memory beginning at the starting address specified in the dump command packet. If

the dump length specified is too big (the memory image would not fit in a maximum

sized packet), the NMF copies only that much of the memory that would fit in a

packet. A remote node would have to transmit a series of dump commands to get a

dump of a large area of memory.

The dump response packet should be generated immediately since the remote NMF

only waits a small finite time for it.

6-23

iNA 960 Architectural Reference Manual
122194-001

Dump Command:

Destina tion Address 6 bytes

Source Address 6 bytes

LLC PDU Length 2 bytes

DSAPID 1 byte

SSAP ID 1 byte

Control 1 byte

Reserved 1 byte

Command 1 byte

Start Address 4 bytes

Len 2 bytes

Padding

Dump Response:

Destination Address 6 bytes

Source Address 6 bytes

LLC PDU Length 2 bytes

DSAPID 1 byte

SSAP ID 1 byte

Control 1 byte

Reserved 1 byte

Command 1 byte

6-24

= OBH

= NMFSAP

= NMFSAP

= OC3H (MUI)

= 0

= AH (Dump Command)

= The starting address of the memory to

be dumped

= The length of the memory area in bytes

to be dumped

To meet mimimum packet size

= OBH + Len

= NMF SAP

= NMF SAP

= OC3H (MUI)

= 0

= BH (dump response)

iNA 960 Architectural Reference Manual
122194--001

Start Address

Len

Memory Image

Padding

4- bytes

2 bytes

= The start address of the memory area

dumped

= The length of the memory area dumped

The memory image

To meet mimimum packet size

Another feature that the NMF provides is the reset service. On receipt of a packet

containing the reset command, the NMF generates a reset acknowledge packet and

then resets the processor. This feature is included in this section because it is

anticipated that it will be used in conjunction with the up-line dumping facility. It

may be possible to reset a remote system that is behaving inappropriately by issuing

a reset command and then examining the memory of the remote system using the

dump commands mentioned earlier. The formats of the packets are shown below.

Remote Reset Command:

Destina tion Address

Source Address

LLC POU Length

DSAPIO

SSAP 10

Control

Reserved

Command

Padding

Remote Reset Response:

6 bytes

6 bytes

2 bytes

1 byte

1 byte

1 byte

1 byte

1 byte

6-25

= 5

= NMFSAP

= NMFSAP

= OC3H (MU!)

= 0

= OFH (Do remote reset cmd)

To meet mimimum packet size

iNA 960 Architectural Reference Manual
122194-001

Destina tion Address 6 bytes

Source Address 6 bytes

LLC PDU Length 2 bytes

DSAPID 1 byte

SSAP ID 1 byte

Control 1 byte

Reserved 1 byte

Command 1 byte

Padding

= 5

= NMFSAP

= NMFSAP

= OC3H (MUI)

= 0

= OEH (Do remote reset resp)

To meet mimimum packet size

6.8 READ/SET MEMORY COMMANDS (ON LOCAL AND REMOTE NODES)

The NMF provides the host with the ability to read/set memory of any host present

on the network. The service provided is:

Read_Memory (Node, Memory_Pointer, Length, Buffer_Pointer)

Where:

Node - Is the node on which this operation is to be performed.

Memory_Pointer - The starting location of the memory to be read.

Length - The length in bytes of the memory to read.

Buffer Pointer - The buffer in which to store the values read.

Returns a value indicating one of the following:

Successfully Completed

Not Done

Bad Parameter

Where:

Node - Is the node on which this operation is to be performed.

Memory_Pointer - The starting location of the memory to be set.

Length - The length in bytes of the memory to set.

Value Pointer - Pointer- to buffer which contains the values to be written

at Memory_Pointer.

6-26

i)J,~ 960 .';rchitectur~l Reference \'lanual
122194-001

Returns a value indicating one of the following:

Successfully Completed

Not Done

Bad Parameter

READ MEMORY/SET MEMORY commands on remote nodes are carried out in a - -
manner similar to that for the READ, READ_AND _ CLEAR and SET commands

described earlier. The NMF utilizes the services of the Transport Control Layer to

communicate with the NMF on the remote node. The only difference is in the

command and response blocks which are illustrated below:

declare rb structure (

TYPE byte,

word, LENGTH

START ADDRESS pointer,

VALUE (LENGTH) byte);

COMMAND BLOCK FOR READ/SET MEMORY

BETWEEN LOCAL AND REMOTE NMFs

TYPE - The function code for this request.

3 - READ MEMORY function

4- - SET \i1EMORY function

START ADDRESS- Pointer that points to the first address where the function is

to be performed.

LENGTH

VALUE

- The length in bytes of the memory to be read/written.

- Valid only for the SET MEMORY command. It contains the values

to which the memory is to be set.

In the case of the READ MEMORY function, the response block contains the

memory that is to be read. In the case of SET MEMO R Y, there is no response block.

6-27

,

INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, California 95051 (408) 987-8080

Printed in U.S.A.

