

A User's Guide to Program Management Tools Program Construction (MAKE)

SFOR I IN XFILES
SIF XOX'I'.OBJ) XO'I'.SRC THEN

RUN PLM86 X'I'.SRC X1
SEN D

SEN D

The MAKE file EXAMPL.MKE has two parameter macros: %0, which specifies a
drive for the object files, and % 1, which specifies options for the compiles.

Invocation of MAKE to process this MAKE file would take the form

MAKE EXAMPL.MKE PARC:F1:,'COMPACT OPTIMIZE(1)')

which would substitute :Fl: for each occurrence of %0 and COMPACT
OPTIMIZE(l) FOR % l.

PAGELENGTH length

The PAGELENGTH (PL) option sets the maximum number of lines per page in the
listing file.

• The length specified must be an unsigned integer from 5 to 65,535.

If either the NOPAGING or NOPRINT option is being used, this option IS

ignored.

PAGEWWIDTH width

The PAGEWIDTH (PW) option sets the maximum number of bytes for a line in the
listing file.

The width specified must be an unsigned integer from 60 to 255.

If the NOPRINT option is being used, this option is ignored.

PAGING/NOPAGING

The PAGING/NOPAGING (PI/NOPI) option specifies that page ejecting and page
headers should or should not exist in the listing file at every page according to the
PAGELENGTH command.

ATTRIB/NOATTRIB

The ATTRIB/NOATTRIB (AT/NOAT) option permits the user to reset the
modification (dirty) bit for files that are in ISIS directories. The A TTRIB option
allows the user to state the name of the program that will perform the resetting. The
NOATTRIB option supresses the resetting of the modification bit. The default string
is ATTRIB.

NOTE

This modification bit is available only on ISIS-II(W), the winchester ISIS.
This option is ignored for all files that reside on the Network Resource
Manager (NRM) for systems on NDS-II.

2-11

Program Construction (MAKE) A User's Guide to Program Management Tools

2-12

MAKE FILES

Make opens an input file, an output file, and optionally a listing file.

Input File (MAKE File)

The input file is the file of dependency information specified by the user on the
command line.

Output File (Submit File)

The output file is always created. This file is the submit file that is built up of user
specified tasks. The user can direct this file to a specified file by using the TO
command.

Listing File

The listing file contains a header summary, a dependency file listing, a dependency
graph listing, and a file summary.

This file is not constructed unless the user requests it through the PRINT
command.

Continuation lines in the listing are marked with a dash just to the left of the
continuation text.

• Only this file contains error messages resulting from improper specifications in
the dependency file.

Header Summary

The header symmary contains the name of the MAKE dependency file, the name of
the constructed submit file and a list of the controls specified by the user.

Dependency File Listing

This section of the listing contains the dependency file as specified by the user.

Dependency Graph Listing

This section of the listing contains a representation of the dependency graph with
levels of indention used to denote dependency. Each line, "representing a target, a
dependency, or both, have the following fields:

Depth-O digits) depth from the root (root is depth 1)

• Separator~{2 blanks)

Indentation-{ 4 (DEPTH-I) blanks)

Name-name of the target/dependency file at this node

• Separator--{blank,colon,blank) only if there are attributes

Attributes-attributes relating to this file

File Summary

The file summary lists the number of lines and number of errors within the MAKE
file.

If MAKE detects an error in the dependency specification, a message is placed in the
listing file.

A User's Guide to Program Management Tools Program Construction (MAKE)

Example

* * * ERR 0 R nnn I N LIN Ell/II tttll; m e 5 5 age

where

nnn

11/

ttt

message

provides the error number.

provides the line number.

provides the input text near where the error was detected.

provides an explanation of the error.

At program completion, MAKE will return the following completion code:

o if no errors were detected

2 if errors were detected

MAKE Error Messages

The following is a list of error messages generated by MAKE.

1. ENUMERATION MACRO REQUIRED IN XALL EXPANSION

2. UNEXPECTED END OF FILE ENCOUNTERED IN XALL
E X PAN S ION

3. UNEXPECTED END OF FILE ENCOUNTERED IN MACRO
DEFINITION

4. UNEXPECTED END OF FILE ENCOUNTERED IN FOR LOOP

5. UNEXPECTED END OF FILE ENCOUNTERED IN TASK LINE

6. UNEXPECTED END OF FILE ENCOUNTERED IN DEPENDENCY
SPEC

7. REFERENCED MACRO IS UNDECLARED

8. SET COMMAND REQUIRES A MACRO NAME

9. FOR STATEMENT REQUIRES AN ENUMERATION MACRO

10. MATCHING SINGLE OR DOUBLE QUOTE NOT FOUND

11. STRING LENGTH LIMIT IS 255 BYTES

12. 'TO' EXPECTED IN MACRO DEFINITION

2-13

Program Construction (MAKE) A User's Guide to Program Management Tools

2-14

13. 'IN' EXPECTED IN FOR STATEMENT

14. MAKE STATEMENT NOT ALLOWED IN TASK LINES

15. UNKNOWN MAKE COMMAND

'16. CONTINUATION OF A MAKE COMMAND EXPECTED, FIRST
CHAR MUST BE '$'

17. MAKE ERROR: MACRO STACK UNDERFLOW

An error in the MAKE program occurred. Please document it and report the
error to your Intel representative.

18. MACRO EXPANSION SUPPORTED TO A DEPTH OF 16

19. COMMA EXPECTED IN NAME LIST

20. 'THEN' REQUIRED IN DEPENDENCY SPECIFICATION

21. NAME USED IN TARGET OPTION NOT FOUND, FIRST
TARGET USED

Fatal Command Errors

The first fatal command error encountered causes MAK E to report the error to the
console and halt processing. Fatal errors result from either an illegal or unknown
option/option value in the invocation and are as follows:

UNKNOWN OPTION

ILLEGAL OPTION VALUE FOR OPTION:

DEPENDENCY FILE REQUIRED AS FIRST OPTION;

RESPECIFICATION OF OPTION NOT ALLOWED:

TOO MANY ARGUMENTS IN PARAMETERS OPTION

FATAL OBJECT/SOURCE CODE INTERFACE ERRORS

The fatal object/source code interface errors occur from calls to the operating system
that cannot be handled because of user error or lack of system resources. If the error
occurs during an I/O operation, the following will be displayed:

M A K E supervisor S Y 5 T E M CAL L ERR 0 R

F I L E: file name

A User's Guide to Program Management Tools Program Construction (MAKE)

ERR 0 R: object or source error message

MAKE TERMINATED

If the error occurs during an non-I/O system call, the message is as above without
the line containing the filename.

2-15

CHAPTER 3
SOFTWARE VERSION

CONTROL SYSTEM (SVCS)

This chapter presents a more in-depth presentation of SVCS. Its purpose is to provide
you with more detailed information on the structure of SVCS.

What Is SVCS?

SVCS allows you to set up a complete data base to manage software projects. SVCS
provides the capability to track changes to program source code, maintains variations
of the source and object code modules for a program, and controls access to these
modules in a multi-programmer environment. Essentially, you can group related
software modules, as well as variations of those modules, within a single data base.

SVCS automatically retains history information on every change to a software module,
including who made the change and when and why the change was made. It also
allows different versions of a module to be uniquely identified. This makes SVCS
well suited to applications that require customized software.

SVCS Structure

SVCS maintains a data base of units that may be checked out and either modified
or returned. An SVCS unit is a reference to a given data base and contains the
following constructs (see figure 3-1):

• Program units

• U nit classes

• Variations

CLASSES (

WORK

filename

UNITS ____ -r------..,
A{MODULE) Z{MODULE)

---------- r----------
SOURCE
OBJECT
CHANGE HISTORY
COMPOSITION

W~~~9 ~ ____

I V2.0
FOO L'--____ --'

OBJ (MODULE) r----------
SOURCE
OBJECT
CHANGE HISTORY
COMPOSITION

Figure 3-1. Software Version Control 121958-3

3-1

Software Version Control System (SVCS) A User's Guide to Program Management Tools

3-2

Program Units

Program units are an expression of the granularity of the data base. They represent
not just one piece of information (such as the text of a source module) but several
pieces of information concerning a single piece of the program that is being
developed.

Developing a program requires manipulation of several different fragments of that
program. These may include source files and their related object files, include files,
and linked objects (e.g., complete programs, overlays, and tasks). One of these
fragments is referred to as a unit within SVCS. A unit is not just one piece of infor
mation, but is all information relating to a particular fragment of the program. The
majority of these will be module units that contain a piece of source (such as a
module), a related object file (if one exists), change history for the unit, and
optionally some composition information.

In addition to the source fragments, a project will need to keep track of the linked
objects (such as tasks, overlays, and complete programs) that are generated. Linked
objects are stored in system units that are identical to module units but do not store
any source.

Module Units

A module unit is a unit of source (either a source module or an include file). Within
a data base there can be any number of such units; however, the best use of the data
base would be to include only those sources that are related to form a logical subset
of the program being developed (refer to the section on optimal use of SVCS in this
chapter).

System Units

System units are the synthesis of one or more source modules created during the
construction of a program. Each of these units is usually the linkage of the objects
generated from the source modules by a translator or the linkage of several link files.
The units provide the following:

• A place to accumulate internal interface information

• A place to permit outside interface to the modules

• A place to store information that is useful for functional documentation of the
modules as a group

• A place to store generation information

SVCS makes no distinction between system units and module units. They are treated
in identical fashion. The distinction is made only through their usage.

Unit Classes

Each program unit has one to four or more classes of information associated with it.
For a module unit, these classes would be the source module, the object module that
results from compiling the source, the change history for the source, plus one class
for any related information, such as a list of include files that are used by the source,
or documentation describing either the module or the interface exported by the module.
For a system unit, the classes would be the same (without the source class).

A User's Guide to Program Management Tools Software Version Control System (SVCS)

SVCS predefines some of the characteristics of these classes, as defined below:

• Source (SO)-This class holds the source mod ule. It is generally present onl y for
module units.

• Object (OJ)-For a module unit, this class is the object that was generated from
the source module by some translator. For a system unit, it is the object module
that was generated from combining the object modules of several module units
or several system units.

• History (HT)-This class contains the who, what, when, and why of a source (or
object) change and is available to the programmer. It is logged automatically
every time a change is made to the source class of a unit. Changes to the history
information can be made any time, not just when the source module of an object
module is returned to the data base with a PUT command.

• Composition (CP)-his class can be used arbitrarily by the user. It is available
for any purpose that will help document the system. Typically, it might be used
to contain a list of unit names that are used for the construction of a particular
unit and/or the tasks required for construction. For a module unit, this list could
be a list of include files to document dependencies. For a system unit, this list
includes the names of the module units whose objects are to be linked together
to form the system object. Generation procedures, interface specifications, or
module documentation (as well as the MAKE file) could also be stored in this
class.

In summary, classes contain the information associated with a unit (module or system)
that is being either developed or maintained.

Variations

The variation (variant) mechanism allows the programmer to have copies (versions)
of the same unit that serve different developmental needs, markets, or end uses. SVCS
supports such development by allowing these different sources to be stored as varia
tions on a single source. A variant represents different flavors of a system or conse
quent version of a module. Each variation has its own name and its own share of the
classes. This enables all of the objects for the different variations to be stored in the
same data base.

The variation construct allows the programmer to have "shadow" copies of each unit
to fulfill various requirements of development and maintenance of the program. The
variations are called shadow copies because they do not actually take up separate
space in the data base, but are merged together, resulting in substantial space savings.
One history file (class) serves for all variations of a unit, as does one source file. This
technique enables the user to spin off a new variation from an old one at any time.

The names of the variations have no inherent meaning; thus they serve merely as a
means of identification. The variation construct can either be used as a version track
ing mechanism or as a mechanism for tracking variations that are created to fulfill
special requirements of different end products.

For each unit, SVCS recognizes the default variant to be the current working version,
WORK. A GET command of a source module with no variant specified will retrieve
the WORK variant. Specifically, named variants may be retrieved, modified, and
returned, just like the current working version. Variants are created with the ADMIN
command and FROM existing variants.

3-3

Software Version Control System (SVCS) A User's Guide to Program Management Tools

3-4

Optimal Use of SVCS

Because the SVCS data base is built upon the existing file system, it is fragmented
into many files (depending on the number of units, classes, and variants). There will
be at least three files per unit in the data base plus one per variant. For large projects,
therefore, there will be many files, with potential for programmer contention
accessing the data base.

For this reason, it may be wise to break up a large project into more than one data
base. There is no penalty for having more than one data base in a project, especially
if they are broken along logical lines (nucleus, I/O system, application, or overlay
boundaries).

There is no physical limit to the number of units in a data base (other than those of
the file system). However, keeping the number of units and variants under 50 or 100
should limit the number of files (and lengthy disk access) and reduce programmer
contention for the data base.

It is recommended that SVCS data bases occupy entire NDS-II sub-directories, rather
than mix user-accessible files with SVCS-accessible files.

Major Functions of SVCS

SVCS allows you to perform the following functions on the data base:

• ADMIN function-allows you to create and delete units and unit variations. It
also allows you to manipulate attributes associated with the variants.

• GET function-allows you to retrieve a unit from the data base either to read or
to modify. Any variant and class of information for a unit is available to the GET
command.

• PUT function-lets you return a unit to the data base (with WRITE permission)
and have the unit's change history update. This allows you to get a source with
WRITE permission, edit it, and then return it to the data base. When PUT of
source occurs, information concerning the changes is automatically logged. At
this time, you can also request that commentary text about the change be placed
with the change history.

• RETURN function-enables you to return modification permission for a source
that was acquired from the data base with WRITE permission. This treats the
GET and RETURN transactions as though they never occurred (no record exists
in the change history). Both the GET and the PUT function act as intelligent
COPYs.

SVCS Commands

SVCS accepts the following commands for processing.

GET

The GET command is used to retrieve information from the data base.

This clause names the file that is to receive the information requested in the GET
command. It is not optional.

A User's Guide to Program Management Tools Software Version Control System (SVCS)

Example

SVCS GET pgm.db(main) TO :f1 :main.src

The options associated with a GET command (WRITE, IDENTIFIER, HISTORY,
COMMON) are described as follows.

WRITE [(varian Llis t)]

The WRITE (WR) option requests write permission on the piece of information that
is to be retrieved (checked out) from the data base for the purpose of modification.

• Permission is granted if no one has it checked out and if the requester has write
permission on the data base.

• The optional variant list allows the requester to retrieve multiple variants at the
same time.

Example

SVCS GET pgm.db(main) TO :f1 :main.src WRITE

IDENTIFIER

The identifier (ID) clause is used to designate the person requesting the information
from the data base. It is required for WRITE permission.

If the ID is omitted on a GET command for WRITE permission, SVCS prompts
for it with ID:. The ID is used to identify who has the module.

• The ID entered in response to the above prompt will consist of all the characters
between the prompt and the carriage return.

Example

SVCS GET pgm.db(main) TO :f1 :main.!rc WRITE ID (Sheila)

HISTORY

In a GET command, the HISTORY (HT) option annotates the source code with the
information from the change history file.

• In a GET command, HT is valid only for the source class and only for read
permission so that your source file cannot be corrupted with history information.

• It allows the programmer to find out when, why, and by whom changes were
made to the source code.

Example

SVCS GET pgm.db(main) TO :f1 :main.!rc HISTORY

COMMON

The COMMON (CM) option directs SVCS to add lines to the retrieved source code
to delineate any lines that are common to all of the variants listed in the WRITE
option variant list and the variants requested by the GET command.

• It is valid only for the source class.

3-5

Software Version Control System (SVCS) A User's Guide to Program Management Tools

3-6

Example

SVCS GET pgm.db(main) TO :f1 :main.src &
WRITE (x119)v1.2) ID (user) COMMON

PUT

The PUT command enables you to return information to the data base that was
checked out for WRITE permission.

The PUT command is not valid if the requester did not check it out with WRITE
permission (verified through ID comparison).

When the PUT command fails, it is ignored.

The options associated with a PUT command (FROM, WRITE, IDENTIFIER,
HISTORY) are described as follows:

FROM file_name

The FROM clause places the named file into the data base.

• It is not valid if the piece of information specified is not checked out by the
person designated by the ID option.

Example

SVCS PUT pgm.db(main) FROM :f1 :maln.src

This command causes SVCS prompt for the ID and the history information as
explained below.

WRITE [(varian Llis t)]

The WRITE (WR) option is used as a counter-check for the GET command.

• If the variant list is not the same as specified in the GET command, the PUT
command fails.

• In general, the user will not choose to use this command but rather rely on the
default. The default is to use the list specified on the GET command.

Example

SVCS PUT pgm.db(maln) FROM :f1 :maln.src WRITE (X119)V1.2)

IDENTIFIER

The identifier (ID) option is used to designate the person replacing the information
into the data base.

• The options is used to verify that the person replacing the information in a PUT
command is the same person who checked it out.

• If the ID is not provided, SVCS prompts with ID:. The ID entered consists of all
the characters between the prompt and the carriage return.

• If the PUT command is used for the source class, the ID is logged with the date,
time, and optional data supplied by the user with the HISTORY option.

A User's Guide to Program Management Tools Software Version Control System (SVCS)

Example

SVCS PUT pgm.dbCmain) FROM :f1 :main.src ID CAndy)

HISTORY

The HISTORY (HT) option allows the user to supply information about why the
file was modified.

It is terminated by the first non-quoted right parenthesis encountered.

The user-supplied information can be retrieved by either doing a GET command
of the history class associated with a unit or by using the HISTORY option on a
GET of the source class for a module unit.

• If the HISTORY option is omitted from a PUT command on a source class,
SVCS prompts for it with the prompt HISTORY:. This prompt is displayed at
the beginning of each line until a zero-length line is encountered (a line contain
ing only a carriage return/line-feed).

RETURN

The RETURN (RT) command returns write permission for the designated variants.
This command is used if the programmer gets a file and then decides not to modify
it. As with the PUT command, the ID option is required and the WRITE option can
be specified. If the WRITE option is used, the variant list must match what was
specified in the GET command.

Example

SVCS RETURN pgm.dbCmain) ID CStu)

ADMIN

The ADMIN command allows SVCS to perform the various administrative functions
required for maintaining a data base.

The options associated with ADMIN (CREATE, ADD, DELETE,
WRITEACCESS, DEFAUL TACCESS, PRINT) are described as follows.

CREATE

The CREATE (CA) option permits the administrator of the data base to create a
dat base. If the file given as the data base name already exists, it is an error. SVCS
will then prompt, asking whether to overwrite the existing file or to simply abort. If
the named data base already exists, it is overwritten. Note that after creating a
database that is to be shared, be sure to change its world access rights so that others
may modify it.

Example

SVCS ADMIN pgm.db CREATE

ADD and DELETE

The ADD option permits the administrator of the data base to add either units or
variants to the data base at any time. Units added will automatically have all variants
defined for that data base.

3-7

Software Version Control System (SVCS) A User's Guide to Program Management Tools

3-8

Example

S V C S A DM IN P 9 m. db ADD (V A R I ANT - pro j A , pro j x , pro j 1)

SVCS ADMIN pgm.db ADD (UNIT-main,data,init)

This example adds three units (main, data and init) to the data base.

The DELETE (DL) option allows the administrator to delete units and variants from
the data base at any time.

Example

SVCS ADMIN pgm.db DELETE (VARIANT-projB)

Both the ADD and DELETE options allow the administrator to specify the creation
or deletion of one or more units (module and system) and one or more variants.

UNIT. A unit can either be created in the data base as empty (if the FROM
clause is not used) or with the source class file initialized to the contents of a
named file (if the FROM clause is used). It is created with an empty object class
file, a variant with the name WORK, and a history class file with an entry for
the creation. It has both read and write permission.

Example

SVCS ADMIN pgm.db ADD (UNIT - main FROM :f1 :main.src

This command adds the unit main while initializing it to the contents of the file
:f1 :main.src.

NOTE
The FROM clause initializes the WORK variant of the unit. All other
variants of the unit remain uninitialized. Thus the user should define units
before defining variants.

• VARIANT. When a variant is either created or deleted, the action occurs on the
entire data base. A variant is always created from an existing variant and has
the identical contents of that variant. In creation, the variant is stated in the
FROM clause. If not, it is created from the WORK variant. The variant is created
with write access enabled but with no associated default accesses.

WRITEACCESS

The WRITEACCESS (WA) option allows the administrator of the data base to allow
or disallow writing to a specified variant within the data base. Any GET command
requesting permission to write on a variant where write access is disallowed will fail.

Example

SVCS ADMIN pgm.db ADD(VARIANT - x119 FROM WORK) &
WRITEACCESS (x119-FALSE)

The preceding example shows that the administrator wishes to create a prototype
variant xl19 from the WORK variant with write access disallowed. By disallowing
write access, the owner of the data base has rendered the variant unmodifiable.

A User's Guide to Program Management Tools Software Version Control System (SVCS)

DEFAULTACCESS

The DEF AUL TACCESS (DA) option allows the administrator of the data base to
set up default accesses to any variant in the data base.

• If the ID list is not specified, the specified variant becomes the default for all
identifiers that are not in any other variant default list.

The word NONE eliminates all identifiers from the list for that variant.

• The word ALL causes the specified variant to become the default for all identi
fiers. This global default can be modified for individual users through further
DEFAUL T ACCESS definitions.

Identifiers in the ID list are stored with the variant in the data base file.

• An identifier will never appear on the default list of more than one variant of a
unit because if it is added to one list while on another, it is automatically deleted
from the old list.

Example

SVCS ADMI pgm.db DEFAULTACCESS (x119-ALL) &
DEFAULTACCESS (WORK-CHRISJELSAJMATTJERIC)

This command would direct all accesses to the data base in which the variant was
not named to the variant named xl19. The exception is that the default variant for
the four named programmers would be the one named WORK. In this way, all outside
references to the data base (generally from groups requiring prototypes) can be
directed without the outside groups needing to know specifics. At the same time, it
permits the programmers working on the program to use the default.

PRINT

The PRINT (PRI) option provides the user with a formatted directory of the data
base.

Example

SVCS ADMIN pgm.db PRINT (db.15t)

SVCS Command Options

The following options can be applied to any of the SVCS commands.

PROMPT INOPROMPT

The PROMPTjNOPROMPT (PROjNPRO) option tells SVCS whether to prompt
on certain error conditions or simply issue the error message and exit. The default
for this command is PROMPT.

TIMEOUT INOTIMEOUT

The TIMEOUT jNOTIMEOUT option establishes the defined period of time SVCS
will try to gain control of the data base before giving up and exiting to the command
level. Since more than one person may wish to access the data base at any time,
SVCS will pause and try again if another SVCS command is executing.

3-9

Software Version Control System (SVCS) A User's Guide to Program Management Tools

3-10

• The default time is 300 seconds.

TIMEOUT can override this default with a user-specified number of seconds.

NOTIMEOUT instructs SVCS to wait forever.

Example

TIMEOUT (30)

SVCS Invocation

The form of the invocation, as well as the method for passing a command line to the
program, is host specific. The general form of invocation is as follows:

I GET I S V C S PUT datB-base_spec options
RETURN
ADM I 1'1

SVCS Syntax

The general syntax for the SVCS program is presented here for reference.

S V C S _command • S V C S _pgm command_tail .

S V C S_pgm = / * the O.S. dependent specification of the executable object of the
program SVCS.86 * /

command_tail • command_type [common_options

command_type • "G E T" db_spec GET _options
" PUT" db_spec PUT _options
" RET URN" db_spec RET URN _options
" ADM I 1'1" db_spec ADM IN_options .

" (" [uniLname]

uniLname • identifier .

variant • identifier .

class • "S 0 U R C E "
"OBJECT"
"HISTORY"
"COMPOSITION"

GET _options • GET _option

[")" [class]

GET _option TO" filename

" ") [variant]
") "

.. W R I T E" [.. (.. varian L lis t ")"]
II I D" .. (" identifer ")"
"H I STORY"
"COMMON"

A User's Guide to Program Management Tools Software Version Control System (SVCS)

PUT _options • PUT _option ...

PUT _option '"' "F ROM" filename
" W R I T E" [.. (" varianLlist ")"
" I D" "(" identifer ")"
" HIS TOR Y" "(" history_string ")"

RET URN_options '"' RET URN_option .

RET URN _option '"' "W R I T E " " (.. varianLlist ")"
" I D" "(" identifier ")"

ADM IN_options '"' ADM IN_option

ADM I N _option '"' "C REA T E "
" ADD" "(" add_item ,,) ..
" DEL E T E" "(" delete_item ")"
.. P R I NT" "(" IisLfile_name ")"
access_options .

add_item • "U NIT" "." add_uniLlist
II V A R I ANT" ". II variant ["F ROM" variant]

delete_item • "U NIT" .. '"''' uniLlist
" V A R I ANT" "'"''' varianLlist •

uniLlist • uniLname "."

add_unit • uniLname [" FRO M" file_name

access_options • " W R I TEA C C E 5 5" "(" varianLassign ")"
" D E F A U L T ACe E 5 5" "(" variant ["= " id_spec] ")"

id_spec • "A L L "
IINONE"
id_list .

varianLassign • varianLlist "." boolean .

varian Llis t • variant

boolean • "T RUE "
"FALSE"

" " J

id_list • identifier "J"

file_name • I * O.S. dependent file name * I

identifier • I * an argument as defined by [2J * I

common_options • PRO M P T _option
TIM E 0 U T ---:option •

PRO M P T _option • .. PRO M P T ..
"NOPROMPT"

3-11

Software Version Control System (SVCS) A User's Guide to Program Management Tools

3-12

TIM E 0 U T _,option • II TIM E 0 U T II II (II num_seconds II) II
IINOTIMEOUTII

num_seconds • / * number of seconds to wait before timing out * /

SVCS Files

SVCS opens a number of different files depending on the options specified by the
user. The various files are described as follows.

Data Base File

The data base file is the heart of SVCS. It contains all of the information about the
various units, variants, classes, and access rights within the overall data base.

This file is generally centrally controlled during a software development process. Any
user can request permission to read the information within the file; however, if the
user wants to modify the data, he must have write access (as designated by the host
operating system). For write requests, the data base file acts as a lock, allowing only
one write request to be honored at anyone time. However, once that request has
control of the data base file, the user can open any of the other files seeking write
permission without fear or deadlock.

If the request to get control of the data base file fails because someone else is either
reading from or writing to that file, SVCS will wait a short time (approximately one
second) and then retry the request. SVCS will wait until that control is relinquished.
The amount of time that SVCS will wait for the data base can be controlled by the
TIMEOUT option as discussed in the summary of SVCS commands contained in
this chapter.

Auxiliary Files

The SVCS data base is not constructed as one large file but as a central data base
file that references several auxiliary files. These files contain information that is
specific to each unit. They have the same name as the data base file but with the
extension changed. The extension on these files is three characters long with one of
the characters being a decimal digit (0----9) and the remaining two being upper case
alphabetic. The extensions are allocated as needed and never reused. This allows for
archiving, deleting, and then restoring from the archives.

Retrieved Files

Either a retneved object or history file results in a straight copy of the auxiliary file
to the file specified in the TO command. These files are never encoded by SVCS.

A retrieved source class file or composition class (both are stored in an encoded
format) is decoded and then placed into the file specified by the user. For source, the
user is also able to specify either or both of two options (HISTORY and COMMON)
that will affect what is placed in the output file. The results of these options are
discussed in the following paragraphs.

A User's Guide to Program Management Tools Software Version Control System (SVCS)

History Option

If the history option is specified on a GET command, the history file is written to the
output file preceding the source file lines. It looks like a listing, which is why it cannot
be changed. Each line of the source file is preceded by a five-character change number
(representing the change that created that line and referencing one of the entries in
the change history) followed by a blank.

Example

I 1 07/141182
VARIANTS:
TEXT: INITIALIZED

I 2 07/30182 CHRIS
VARIANTS: WORK
TEXT: This change reflects corrections to the
third) fourth) and fifth lines.

1 This example shows the "result of using the
1 HISTORY option on a GET of source. The
2 first) second) and sixth lines show up as
2 the original lines (from when the file was
2 initialized), The other lines were changed
1 at a later time to correct errors.

Common Option

If the common option is specified on a GET command (valid only on a source class),
lines that are common to all variants in the variant list are preceded by the line shown
in the example.

Example

SVCS allows the user to GET more than
one variant at the same time. The

SSVCS COMMON
COMMON option can be used on such a
GET to delineate the lines that are
common to all variants. This example

SSVCS END COMMON
shows the result of just such a GET.
The third) fourth) and fifth lines are
common to all variants of the GET. The
other lines only exist in the main
variant of the GET.

Stored Files

A stored object or history file results in a straight copy to the auxiliary file from the
file specified in the FROM clause. These files are never encoded by SVCS.

A stored source class file or composition class file is compared against the lines in
the associated auxiliary file and merged in with those lines in an encoded format to
save space.

3-l3

Software Version Control System (SVCS) A User's Guide to Program Management Tools

3-14

If the file being stored was retrieved with the COMMON option, the lines inserted
to designate the common source are stripped out before the store actually takes place.

SVCS Error Messages

This section lists all the possible error messages associated with the SVCS program.

Command Errors

Command errors result from either an illegal or unknown option/option value in the
invocation line. SVCS prompts for respecification of the erroneous information if the
prompt option is in effect; otherwise, it merely displays the error message and exits.
There are messages that indicate internal errors; when one of these appears contact
your Intel representative.

The SVSC command error messages are as follows:

1. DATA BASE FILE REQUIRED

2. F I LEI S NOT A N S V C S D A TAB A S E F I L E: file_name

3. U N K NOW N V A R I ANT N A ME: variant

4. CANNOT DELETE THE WORK VARIANT

5. CAN NOT C REA T E, U NIT A L REA DYE X 1ST S: uniLname

6. CAN NOT C REA T E, V A R I ANT A L REA DYE X 1ST S: varianLname

7. Only 16 VARIANTS may be added in one ADMIN.
Please break up the SVCS invocation into several
invocations.

8. ADMIN not interactive, please respecify with
complete command

9. U N K NOW N V A R I ANT I N W R I TEL 1ST varianLname

10. FILE NOT CURRENTLY CHECKED OUT

1 1 • CAN NOT RET URN W R I T E PER MIS S ION, 0 W N E R I S owner_name

1 2. CAN NOT PUT F I L E, 0 W N E R I S owner_name

1 3. W R I TEA C C E S S NOT ALL 0 WED 0 N V A R I ANT: varianLname

A User's Guide to Program Management Tools Software Version Control System (SVCS)

1 4. D u P 1 i cat e 0 c cur e n ceo f v a ria n t : varian Lname
Occurrence in WRITE listing ignored.

15. SVCS INTERNAL ERROR #1
Please contact your Intel representative

16. SVCS DIRECTORY EXTENSIONS EXHAUSTED
Please contact your Intel representative

1 7. ILL EGA LOP T ION V A L U E FOR 0 P T ION: option_name

1 8. U N K NOW NUN I T N A ME: uniLname

19. ID OPTION REQUIRED

20. CANNOT PUT FILE, IT IS NOT CHECKED OUT

21. HISTORY OPTION REQUIRED

22. SVCS INTERNAL ERROR #2
Please contact your Intel representative

2 3. U N K NOW N 0 P T ION: option_name

24. INSUFFICIENT ROOM FOR LARGEST RECORD

25. INSUFFICIENT ROOM TO SYNCHRONIZE

2 6. R E QUE S TED F I LEI 5 C H E C KED 0 U T TO: id_name

Fatal Object/Source Interface Errors

These errors occur from calls to the operating system that cannot be handled because
of user error or lack of system resources. If the error occurs during an I/O operation,
the error message is as follows:

S V C S supervisor I / 0 ERR 0 R
F I L E: file_name
ERR 0 R: message
SVCS TERMINATED

If the error occurs during a non~I/O system call, the message will the same as the
preceding one without the line containing the filename.

3-15

Software Version Control System (SVCS) A User's Guide to Program Management Tools

3-16

SVCS Prompt Messages

If the PROMPT option is in effect, certain error conditions cause SVCS to prompt
the user for correct input. The following prompt messages are supported by SVCS:

A data base name is reqUired, please enter one.
DATA BASE:

An SVCS command is reqUired. The command choices are:
GET - to retrieve information from SVCS
PUT - to put information into SVCS
RETURN to return WRITE permission
ADMIN - to perform administrative functions on SVCS

Please enter one of these commands:

Unknown variant (variantSname), please respecify
VARIANT:

An identifier is reqUired for this operation. Please enter
your id
I D:

Please specify the name of the file that is to be copied to
IITO II FILE NAME:

A unit name is reqUired for this operation.
Please specify one
UN IT:

Pie a s e s p e c i f Y the n a m e 0 f the f i let hat i s t 0 b e cop i e d
from
IIFROM II FILE NAME:

A n e x p I a nat ion 0 f t his PUT i s r e qUi red for the mod i f i cat ion
history.
Please type in an appropriate entry
HISTORY:

APPENDIX A
SUMMARY OF MAKE/SVCS
COMMANDS AND PROMPTS

Table A-I. Summary of MAKE Commands

Command Explanation

TO Directs the writing of the submit file

GENALL (GA) Specifies that dependencies are not to be checked and
that everything is to be generated

TARGET (TG) Specifies the target file specified in a target list (results
in a partial generation)

PRINT (PR) Specifies placement of listing file

NOPRINT (NOPR) Suppresses generation of the listing file

PARAMETERS (PAR) Matches actual parameters with formal

PAGELENGTH (PL) Sets the number of lines per page for the listing file

PAGEWIDTH (PW) Sets the maximum number of bytes for a line in the
listing file

PAGING/NOPAGING Controls page ejecting and headers in the listing file
(PI/NOPI)

ATTRIB/NOATTRIB Permits the user to reset the modification bit of files in
(AT/NOAT) the ISIS directory

Table A-2. Summary of SVCS Commands

Command Explanation

GET Retrieves information from the data base

TO Names the file that is to receive the information

WRITE (WR) Requests write permission on information

IDENTIFIER (ID) Designates person requesting information

HISTORY (HT) Includes history information in the retrieved file

COMMON (CM) Allows for manipulation of common information

PUT Returns information (checked out with write permission)
to the data base

FROM Name of file to be copied into the data base

WRITE (WR) Countercheck for GET command

IDENTIFIER (ID) Verifies that the person replacing the information is the
same person who checked it out

HISTORY (HT) Designates why changes were made

RETURN (RT) Returns write permission for the designated variant

WRITE (WR) Same as for PUT

IDENTIFIER (ID) Same as for PUT

ADMIN Allows for the administrative functions associated with a
data base

CREATE (CA) Creates a data base

ADD Permits the adminstrator to add units or variants to the
data base

DELETE Permits the adminstrator to delete units or variants from
the data base

A-I

Summary of MAKEjSVCS Commands and Prompts A User's Guide to Program Management Tools

Table A-2. Summary of SVCS Commands (Cont'd.)

Command Explanation

WRITEACCESS (WA) Allows the administrator to allow/disallow writeaccess to
a given variant

DEFAULTACCESS(DA) Allows the administrator to establish default access to
any variant

PRINT (PRI) Provides formatted directory of the data base

These options apply to the GET, PUT, RETURN and ADMIN commands

PROMPT (PRO) Instructs SVCS as to whether to prompt or simply exit
NOPROMPT (NPRO) on error conditions

TIMEOUT Establishes time period SVCS will try to gain control of
data base before giving up

NOTIMEOUT Instructs SVCS to attempt to gain control without giving
up

Table A-3. Summary of SVCS Prompt Messages

Prompt Explanation

PLEASE ENTER ONE OF THESE SVCS command missing

GET Retrieve information

PUT Put information into SVCS

RETURN Return write permission

ADMIN Perform adminstrative functions on SVCS

DATA BASE: Data base name either missing or incorrect

UNIT: Unit name missing or incorrect

VARIANT: Variant name missing or incorrect

TO FILENAME: Filename where information is to be copied is
missing

FROM FILENAME: Filename that contains information to be put into
the data base is missing

ID: Identification of user is required

HISTORY: Explanation of change is required

A-2

APPENDIX B
ADDITIONAL INFORMATION
FOR THE SERIES III USER

This appendix contains information specific to the Intellec Series III Microcomputer
Development System. It covers the following subjects:

Series III literature

Hardware and software required

• System resources used by PMTs

System-specific examples of invocation lines and commands

Series III Literature

Information describing the general operation of the Series III is provided in the
following manuals:

• Intellec Series III Microcomputer Development Product Overview, 121575

• Intellec Series III Microcomputer Development System Console Operating
Instructions, 121609

• Intellec Series III Microcomputer System Programme's Reference Manual,
121618

Hardware and Software Required

To run the PMTs, the following hardware and software are required:

Intellec Series III development system (with RUN version l.5 or later)

• ISIS-II Operating System (version 4.1 or later)

• 8086-based Utilities

System Resources

The amount of memory available depends upon the amount of memory in your system.
The Series III can be expanded up to one megabyte of memory addressable by the
8086. PMTs require approximately 96K bytes. More memory must be added to
accommodate additional workspace and programs.

Invocation Line

To invoke PMTs in the 8086 execution environment of the Series III, preface the
invocation line with the RUN command. The ISIS-II operating system prompt is a
hyphen (-).

The general format of the MAKE invocation is

RUN MAKE

MAKE signs on with the following message:

S e r 1 e 5 - I I I M A K E , V x.y

B-1

Additional Information for the Series III User A User's Guide to Program Management Tools

The general format of the SVCS invocation is

RUN SVCE

SVCS signs on with the following message:

5 e r 1 e !!I - I I I 5 0 f t IN i!! reVer !!I 1 0 nCo n t r 0 1 5 Y !!I t e m J V x.y

8-2

• , ®
i

ADD, 1-9, 3-7
ADMIN, 1-5, 1-8, 1-9, 3-4, 3-7
ampersand, 3-8
AT/NOAT,2-11
ATTRIB/NOATTRIB,2-11
auxiliary files, 3-12, 3-13

classes, 3-1
command errors, 2-14, 3-14
command line, 1-6, 2-2, 2-3
COMMON option, 3-5, 3-13
compl(:tion code, 2-13
composition, 1-2, 3-3
continuation lines, 2-12, 3-8
CP,3-3
CREATE, 1-9,3-7

DA,3-9
data base, 1-2, 1-3, 1-5, 1-8, 1-9,3-1,3-2,3-12
DEFAULTACCESS, 3-9
DELETE, 1-10, 3-7, 3-8
dependency file, 1-6, 2-1, 2-2, 2-10, 2-12
dependency graph, 1-3,2-1,2-10, 2-12
dependency nodes, 1-3, 1-6, 2-1, 2-3, 2-6, 2-10, 2-12
DL,3-8
dollar sign, 1-6, 2-2, 2-3

END, 1-6, 2-3
environment, 1-2
error message

MAKE, 1-7,2-13
SVCS, 3-14

fatal command errors, 2-14, 3-15
FROM,3-6

GENALL, 1-5, 2-9
generation, 1-2
GET, 1-2, 1-8, 3-4, 3-6

history, 1-1, 1-3,3-3, 3-5, 3-7, 3-13
HT, 3-3, 3-5, 3-7

ID, 3-5, 3-6
IDENTIFIER, 3-5, 3-6
incorporating MAKE and SVCS, 1-5
input file, 2-12
invocation

MAKE, 1-6,2-8,2-11,2-13, B-1
SVCS, 1-8, 3-10, B-2

iteration commmand, 2-2, 2-6
ISIS-II, v, B-1
ISIS-II(W), v, 1-2, 2-11
ISIS-IlI(N), v, 1-2

listing file, 2-12

macro definitions, 2-2, 2-3, 2-6
MAKE, 1-1, 1-6,2-1
MAKE command line, 1-6
MAKE Command Options, 2-9
MAKE commands, 2-2, A-I
MAKE file, 1-3 thru 1-5, 1-6, 2-8, 2-12
module housekeeping, 1-1
module unit, 3-2

NDS-II, v, 1-2, 2-11
Network Resource Manager, 2-11
Notational Conventions, vi

object, 1-2, 3-3
object modules, 1-1
OJ,3-3
options, 3-9
output file, 1-7, 2-12

PAR, 2-10
PARAMETERS

actual, 2-1 °
formal,2-1O

PAGELENGTH,2-11
PAGEWIDTH,2-11
PAGING/NOPAGING,2-11
PI/NOPI,2-11
PL,2-11
PMTs, v, 1-1, B-1
PR/NOPR, 2-10
primary class, 3-2
PRINT, 1-7,2-12, 3-9
PRINT/NOPRINT, 2-10
PRO /NPRO, 3-9
programmable secretaries, 1-1
prompt, 3-7, 3-16
PROMPT /NOPROMPT, 3-9
PUT, 1-3, 1-8, 3-4, 3-6
PW,2-11

read, 1-8, 3-5
Related Publications, v
retrieved files, 3-12
RETURN, 1-8, 1-9, 3-4, 3-7
RUN, B-1

semi-colon, 2-2
Series III, v, B-1
shadow, 3-3
sign-off message, 1-9
SO, 3-3
software generation, 1-1, 1-5
software management, 1-1
source, 1-2, 3-2
source class, 3-2, 3-5
source contention, 1-2
source modules, 1-1, 3-2
submit file, 1-1, 1-5, 1-7, 2-2, 2-8, 2-12

INDEX

Index-l

Index

SVCS, 1-1, 1-8, 3-1
SVCS access definition, 2-6, 2-7
SVCS command line, 1-8
SVCS commands, 1-8, 3-4, 3-9, A-I
SVCS files, 3-12
SVCS prompts, 1-5,3-16, A-2
syntax

MAKE,2-8
SVCS, 3-10

system unit, 3-2

TARGET,2-10
target file, 1-6, 2-2
task lines, 1-6, 1-7,2-2,2-3

Index-2

A User's Guide to Program Management Tools

TIMEOUT /NOTIMEOUT, 3-9, 3-12
TO, 2-9
tracking changes, 1-1, 3-3

units, 3-1,3-2, 3-8

variants, 3-3, 3-8
variations, 1-2, 3-1, 3-3

WA,3-8
winchester disk, 1-2, 2-11
WORK, 3-3, 3-8
WR,3-6
WRITE, 1-2, 1-8, 3-4, 3-6
WRITEACCESS, 3-8

A User's Guide to Program Management T
121958

REQUEST FOR READER'S COMMENTS

Intel's Technical Publications Departments attempt to provide publications that meet the needs of all Intel proc
users. This form lets you participate directly in the publication process. Your comments will help us correct 4

improve our publications. Please take a few minutes to respond.

Ploase restrict your comments to the usability, accuracy, readability, organization, and completeness of .
publication. If you have any comments on the product that this publication describes, please contact your II
representative. If you wish to order publications, contact the Intel Literature Department (see page ii of .
manual).

1. Please describe any errors you found in this publication (include page number).

2. Does the publication cover the information you expected or required? Please make suggestions
improvement.

3. Is this the right type of publication for your needs? Is it at the right level? What other types of publicati
are needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this publication on a scale of 1 to 5 (5 being the best rating) .. __________ _

NAME ___ __ DATE _________ _

TITLE __ _

COMPANYNAME/DEPARTMENT __ _
ADDRESS __ __

CITY ______________ _ STATE _________ _ ZIP CODE ___ _

(COUNTRY)

Please check here if you require a written reply. 0

fE'O LIKE YOUR COMMENTS ..•

lis document is one of a series describing Intel products. Your comments on the back of this form will
~Ip us produce better manuals. Each reply will be carefully reviewed by the responsible person. All
)mments and suggestions become the property of Intel Corporation.

BUSIN ESS REPLY MAIL
FIRST CLASS PERMIT NO. 1040 SANTA CLARA, CA

POSTAGE WILL BE PAID BY ADDRESSEE

Intel Corporation
Attn: Technical Publications MIS 6-2000
3065 Bowers Avenue
Santa Clara, CA 95051

IIII NO POSTAGE
NECESSARY

IF MAILED
IN U.S.A.

INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, California 95051 (408) 987-8080

Printed in U.S.A.

