

MACRO-SO ASSEMBLER PAGE 2-30

2.7.S LOCAL

LOCAL <dummylist>

The LOCAL pseudo-op is allowed only inside a MACRO
definition. When LOCAL is executed, the assembler creates a
unique symbol for each <dummy> in <dummylist> and
substitutes that symbol for each occurrence of the <dummy>
in the expansion. These unique symbols are usually used to
define a label within a macro, thus eliminating
multiply-defined labels on successive expansions of the
macro. The symbols created by the assembler range from
.• 0001 to .. FFFF. Users will therefore want to avoid the
form •. nnnn for their own symbols. If LOCAL statements are
used, they must be the first statements in the macro
definition.

2.7.9 Special Macro Operators And Forms

& The ampersand is used in a macro expansion to
concatenate text or symbols. A dummy parameter that
is in a quoted string will not be substituted in the
expansion unless it is immediately preceded by &.

.. , ,

rn_ .1:_ �~�_�_� - _,.., t ,-

�~� - - - - •• , - '-.l ••• - - -

between them. For example:

ERRGEN MACRO
ERROR&X:PUSH

MOVI
JMP
ENDM

X
BX
BX, • &X·
ERROR

In this example, the call ERRGEN A will generate:

ERRORA: PUSH B
MOVI BX, • A'
JMP ERROR

In a block operation, a comment preceded by two
semicolons is not saved as part of the expansion
(i.e., it will not appear on the listing even under
.LALL) • A comment preceded by one semicolon,
however, will be preserved and appear in the
expansion.

When an exclamation point is used in an argument,
the next character is entered literally (i.e., 1;
and <;> are equivalent).

MACRO-80 ASSEMBLER PAGE 2-31

NUL NUL is an operator that returns true if its argument
(a parameter) is null. The remainder of a line
after NUL is considered to be the argument to NUL.
The conditional

IF NUL argument

is false if, during the expansion, the first
character of the argument is anything other than a
semicolon or carriage return. It is recommended
that testing for null parameters be done using the
IFB and IFNB conditionals.

The percent sign is used only in a macro argument.
% converts the expression that follows it (usually a
symbol) to a number in the current radix. During
macro expansion, the number derived from converting
the expression is substituted for the dummy. Using
the % special operator allows a macro call by value.
(Usually, a macro call is a call by reference with
the text of the macro argument substituting exactly
for the dummy.)

The expression following the % must conform to the
same rules as the DS (Define Space) pseudo-oPe A
valid expression returning a non-relocatable
constant is required.

EXAMPLE: Normally, LB, the argument to MAKLAB,
would be substituted for Y, the argument to MACRO,
as a string. The % causes LB to be converted to a
non-relocatable constant which is then substituted
for Y. Without the % special operator, the result
of assembly would be 'Error LB' rather than 'Er.ror
I', etc.

MAKLAB MACRO Y
ERR&Y: DB 'Error &Y' ,0

ENDM
MAKERR MACRO X
LB SET 0

REPT X
LB SET LB+l

MAKLAB %LB
ENDM
ENDM

When called by MAKERR 3, the assembler will
generate:

ERRl: DB 'Error l' ,0
ERR2: DB 'Error 2' ,0
ERR3: DB 'Error 3 • ,0

MACRO-80 ASSEMBLER PAGE 2-32

TYPE The TYPE operator returns a byte that describes two
characteristics of its argument: 1) the mode, and
2) whether it is External or not. The argument to
TYPE may be any expression (string, numeric,
logical) • If the expression is invalid, TYPE
returns zero.

The byte that is returned is configured as follows:

The lower two bits are the mode. If the lower two
bits are:

a the mode is Absolute
1 the mode is Program Relative
2 the mode is Data Relative
3 the mode is Common Relative

The high bit (SOH) is the External bit. If the high
bit is on, the expression contains an External. If
the high bit is off, the expression is local (not
External) •

The Defined bit is 20H. This bit is on if the
expression is locally defined, and it is off if the
~vnr,QC!C!;l"'\n ;C! I1nnpi=;np;t nr pvi-prn~' _ Tf npii-hpr hit -
is on, the expression is invalid.

TYPE is usually used inside macros, where an
argument type may need to be tested to make a
decision regarding program flow. For example:

FOO MACRO X
LOCAL Z

Z SET TYPE X
IF Z ..•

MACRO-80 ASSEMBLER PAGE 2-33

2.8 USING Z80 PSEUDO-OPS

When using the MACRO-80 assembler, the following Z80
pseudo-ops dre valid. The function of each pseudo-op is
equivalent to that of its counterpart.

Z80 pseudo-op

COND
ENDC
*EJECT
DEFB
DEFS
DEFW
DEFM
DEFL
GLOBAL
EXTERNAL

Equivalent pseudo-op

IFT
ENDIF
PAGE
DB
DS
DW
DB
SET
PUBLIC
EXTRN

The formats, where different, conform to the previous
format. That is, DEFB and DEFW are permitted a list of
arguments (as are DB and DW), and DEFM is permitted a string
or numeric argument (as is DB) .

MACRO-80 ASSEMBLER PAGE 2-34

2.9 SAMPLE ASSEMBLY

A>Mao

*EXMPLl,TTY:=EXMPLl

MAcao 3.2 PAGE 1

00100 :CSL3 (PI, P2)
00200 :SHIFT PI LEFT CIRCULARLY 3 BITS
00300 :RETURN RESULT IN P2
00400 ENTRY CSL3
00450 :GET VALUE OF FIRST PARAMETER
00500 CSL3:

0000' 7E 00600 MOV A,M
0001' 23 00700 INX H
0002' 66 00800 MOV H,M
0003' 6F 00900 MOV L,A

01000 :SHIFT COUNT
0004' 06 03 01100 MVI B,3
0006' AF 01200 LOOP: XRA A

01300 :SHIFT LEFT
0007' 29 01400 DAD H

"'1:"" • nrVT'l7\"'1:' T ' ~v DT",

0008' 17 01600 RAL
0009' 85 01700 ADD L
OOOA' 6F 01800 MOV L,A

01900 :DECREMENT COUNT
OOOB' 05 02000 OCR B

02100 :ONE MORE TIME
OOOC' C2 0006' 02200 JNZ LOOP
OOOF' EB 02300 XCHG

02400 : SAVE RESULT IN SECOND PARAMETER
0010' 73 02500 MOV M,E
0011' 23 02600 INX H
0012' 72 02700 MOV M,D
0013' C9 02800 RET

02900 END

MAC80 3.2 PAGE S

CSL3 OOOOI' LOOP 0006'

No Fatal error(s)

MACRO-SO ASSEMBLER PAGE 2-35

2.10 MACRO-SO ERRORS

MACRO-SO errors are indicated by a one-character flag in
column one of the listing file. If a listing file is not
being printed on the terminal, each erroneous line is also
printed or displayed on the terminal. Below is a list of
the MACRO-SO Error Codes:

A Argument error
Argument to pseudo-op is not in correct format or
is out of range (.PAGE 1; .RADIX 1; PUBLIC 1;
JMPS TOOFAR).

C Conditional nesting error
ELSE without IF, ENDIF without IF, two ELSEs on
one IF.

D Double Defined symbol
Reference to a symbol which is multiply defined.

E External error
Use of an external illegal in context (e.g., Faa
SET NAME##; MOVI AX,2-NAME##).

M Multiply Defined symbol
Definition of a symbol which is multiply defined.

N Number error
Error in a number, usually a bad digit (e.g., SQ).

o Bad opcode or objectionable syntax
ENDM, LOCAL outside a block; SET, EQU or MACRO
without a name; bad syntax in an opcode; or bad
syntax in an expression (mismatched parenthesis,
quotes, consecutive operators, etc.).

P Phase error
Value of a label or EQU name is different on pass
2.

Q Questionable
Usually means a line is not terminated properly.
This is a warning error (e.g. MOV AX,BX,).

R Relocation
Illegal use of relocation in expression, such as
abs-rel. Data, code and COMMON areas are
relocatable.

U Undefined symbol
A symbol referenced in an expression is not
defined. (For certain pseudo-ops, a V error is
printed on pass 1 and a U on pass 2.)

MACRO-SO ASSEMBLER PAGE 2-36

V Value error
On pass 1 a pseudo-op which must have its value
known on pass 1 (e.g., .RADIX, . PAGE, DS, IF, IFE,
etc.), has a value which is undefined. If the
symbol is defined later in the program, a U error
will not appear on the pass 2 listing.

Error Messages:

'No end statement encountered on input file'
No END statement: either it is missing or it is
not parsed due to being in a false conditional,
unterminated IRP/IRPC/REPT block or terminated
macro.

'Unterminated conditional'
At least one conditional is unterminated at the
end of the file.

'Unterminated REPT/IRP/IRPC/MACRO'
At least one block is unterminated.

[xx] [No] Fatal error (s) [,xx warnings]
The number of fatal errors and warnings. The

.. - - - -- -' - --

2.11 COMPATIBILITY WITH OTHER ASSEMBLERS

The $EJECT and $TITLE controls are provided for
compatability with INTEL's ISIS assembler. The dollar sign
must appear in column 1 only if spaces or tabs separate the
dollar sign from the control word. The control

$EJECT

is the same as the MACRO-SO PAGE pseudo-oPe
The control

$TITLE (, text')

is the same as the MACRO-SO SUB TTL <text> pseudo-oPe

The INTEL operands PAGE and INPAGE generate Q errors when
used with the MACRO-SO CSEG or DSEG pseudo-ops. These
errors are warnings; the assembler ignores the operands.

When MACRO-SO is entered, the default for the origin is Code
Relative O.

With the INTEL ISIS assembler, the default is Absolute O.

MACRO-SO ASSEMBLER PAGE 2-37

With MACRO-SO, the dollar sign ($) is a defined constant
that indicates the value of the location counter at the
start of the statement. Other assemblers may use a decimal
point or an aster1SK. Other constants are defined by
MACRO-SO to have the following values:

A=7
H=4

B=O
L=5

C=l
M=6

2.12 FORMAT OF LISTINGS

D=2
SP=6

E=3
PSW=6

On each page of a MACRO-SO listing, the first two lines have
the form:

[TITLE text]
[SUBTTL text]

where:

M80 3.3 PAGE x[-y]

1. TITLE text is the text supplied with the TITLE
pseudo-op, if one was given in the source program.

2. x is the major page number, which is incremented
only when a form feed is encountered in the source
file. (When using Microsoft's EDIT-80 text editor,
a form feed is inserted whenever a page mark is
done.) When the symbol table is being printed, x =
S.

3. y is the minor page number, which is incremented
whenever the .PAGE pseudo-op is encountered in the
source file, or whenever the current page size ~as
been filled.

4. SUBTTL text is the text supplied with the SUBTTL
pseudo-op, if one was given in the source program.

Next, a blank line is printed, followed by the first line of
output.

A line of output on a MACRO-80 listing has the following
form:

[crf#] [error] loc#m Ixx I xxxx/ •.. source

If cross reference information is being output, the first
item on the line is the cross reference number, followed by
a tab.

A one-letter error code followed by a space appears next on
the line, if the line contains an error. If there is no
error, a space is printed. If there is no cross reference
number, the error code column is the first column on the
listing.

MACRO-80 ASSEMBLER PAGE 2-38

The value of the location counter appears next on the line.
It is a 4-digit hexadecimal number or 6-digit octal number,
depending on whether the /0 or /H switch was given in the
MACRO-80 command string.

The character at the end of the location
the mode indicator. It will be one
symbols:

"

<space>
*

Code Relative
Data Relative
COMMON Relative
Absolute
External

counter value is
of the following

Next, three spaces are printed followed by the assembled
code. One-byte values are followed by a space. Two-byte
values are followed by a mode indicator. Two-byte values
are printed in the opposite order they are stored in, i.e.,
the high order byte is printed first. Externals are either
the offset or the value of the pointer to the next External
in the chain.

If a line of output on a MACRO-80 listing is from an INCLUDE
file, the character 'e' is printed after the assembled code
on that line. If a line of output is part of a text
expansion (MACRO, REPT, IRP, IRPC) a plus sign '+' is
pr1ntea a~ter tne assemOLea eoae on tnat Llne.

The remainder of the line contains the line of source code,
as it was input.

Example:

OC49 3A A9IZ' C+ LDA LCOUNT

'C+' indicates this line is from an INCLUDE file and part of
a macro expansion.

MACRo-aD ASSEMBLER PAGE 2-39

2.12.1 Symbol Table Listing

In the symbol table listing, all the macro names in the
program are listed alphabetically, followed by all the
symbols in the program, listed alphabetically. After each
symbol, a tab is printed, followed by the value of the
symbol. If the symbol is Public, an I is printed
immediately after the value. The next character printed
will be one of the following:

U

C

*
<space>

"

Undefined symbol.

COMMON block name. (The "value" of the
COMMON block is its length (number of
bytes) in hexadecimal or octal.}

External symbol.

Absolute value.

Program Relative value.

Data Relative value.

COMMON Relative value.

CHAPTER 3

CREF-SO CROSS REFERENCE FACILITY

In order to generate a cross reference listing, the
assembler must output a special listing file with embedded
control characters. The MACRO-SO command string tells the
assembler to output this special listing file. /C is the
cross reference switch. When the /e switch is encountered
in a MACRO-SO command string, the assembler opens a .CRF
file instead of a .LST file. (See Section 2.6.27 for the
.CREF and .XCREF pseudo-ops.)

Examples:

*=TEST/C

*T,U=TEST/C

Assemble file TEST.MAC and
create object file TEST.REL
and cross reference file
TEST.CRF.

Assemble file TEST.MAC and
create object file T.REL
and cross reference file
U.CRF.

When the assembler is finished, run the cross reference
facility by typing CREFSO. CREFSO prompts the user with an
asterisk. CREF80 generates a cross reference listing from
the .CRF file that was created during assembly. The CREF80
command format is:

*listing file=source file

The default extension for the source file is .CRF.
are no switches in CREF80 commands.

There

CREF-80 CROSS REFERENCE FACILITY

Examples of CREF-80 command strings:

*=TEST

*T=TEST

Examine file TEST.CRF and
generate a cross reference
listing file TEST.LST.

Examine file TEST.CRF and
generate a cross reference
listing file T.LST.

PAGE 3-2

Cross reference listing files differ from ordinary listing
files in that:

1. Each source statement is numbered with a cross
reference number.

2. At the end of the listing, variable names appear in
alphabetic order along with the numbers of the
lines on which they are referenced or defined.
Line numbers on which the symbol is defined are
flagged with 'i'.

CHAPTER 4

LINK-SO LINKING LOADER

4.1 RUNNING LINK-SO

The command to run LINK-SO is

LSD

LINK-SO returns the prompt
accept commands.

4.2 COMMAND FORMAT

n*n , indicating it is ready to

Each command to LINK-SO consists of a string of object
filenames separated by commas. These are the files to be
loaded by LINK-SO. The command format is:

objfilel,objfile2, ••• objfilen

The default extension for all filenames is REL. Command
lines are supported, that is, the invocation and command may
be typed on the same line.

Example:

LSD MYPROG,YRPROG

LINK-SO LINKING LOADER PAGE 4-2

Any filename in the LINK-SO command string can also specify
a device name. The default device name with the CP/M
operating system is the currently logged disk. The default
device with the ISIS-II operating system is disk drive o.
The format is:

devl:objfilel,dev2:objfile2, ••• devn:objfilen

The device names are as listed in Section 2.2.1.

Example:

LSO MYPROG,A:YRPROG

After each line is typed, LINK-SO will load the specified
files. After LINK finishes this process, it will list all
symbols that remained undefined followed by an asterisk.

Example:

*MAIN

DATA 0100 0200

SUBRl * (SUBRI is undefined)

*SUBRI

DATA 0100 0300

*
Typically, to execute a MACRO-SO program and subroutines,
the user types the list of filenames followed by /G (begin
execution). To resolve any external, undefined symbols, you
can first search your library routines (See Chapter 5,
LIB-SO) by appending the filenames, followed by IS, to the
loader command string.

*MYLIB/S

*/G

Searches MYLIB.REL for unresolved
global symbols

Starts execution

4.2.1 LINK-SO Switches

A number of switches may be given in the LINK-SO command
string to specify actions affecting the loading or execution
of the program{s). Each switch must be preceded by a slash
(/) .

LINK-80 LINKING LOADER PAGE 4-3

Switches may be placed wherever applicable in the command
string:

1. At command level. It is possible for a switch to
be the entire LINK-80 command, or to appear first
in the command string. For example:

*/G Tells LINK-80 to begin execution
of program(s) already loaded

*/M List all global references
from program(s) already loaded

*/P:200,FOO Load FOO, with program area
beginning at address 200

2. Immediately after a filename. An S or N switch may
refer to only one filename in the command string.
Therefore, when the S or N switch is required, it
is placed immediately after that filename,
regardless of where the filename appears in the
command string. For example:

*MYLIB/S,MYPROG
Search MYLIB.REL and load necessary
library modules, then load MYPROG~REL.

*MYPROG/N,MYPROG/E
Load MYPROG.REL, save MYPROG.COM
on disk and exit LINK-80.

3. At the end of the command string. Any required
switches that affect the entire load process may be
appended at the end of the command string. for
example:

*MYPROG/N,MYPROG/M/E
Open a CP/M COM file called
MYPROG.COM, load MYPROG.REL
and list all global refer­
ences. Exit LINK-80 and save
the COM file.

MYLIB/S,MYSUB,MYPROG/N,MYPROG/M/G
Search MYLIB.REL, load and link
MYSUB.REL and MYPROG.REL,
open a CP/M COM file
called MYPROG.COM, list
all global references, save the
COM file, and execute MYPROG.

LINK-SO LINKING LOADER PAGE 4-4

The available switches are:

Switch

R

E or E:Name

G or G:Name

N

Action

Reset. Put loader back in its initial state.
Use /R if you loaded the wrong file by
mistake and want to restart. /R takes effect
as soon as it is encountered in a command
string.

Exit LINK-SO and return to the operating
system. The system library will be searched
on the current disk to satisfy any existing
undefined globals. Before exiting, LINK-SO
prints three numbers: the start address, the
address of the next available byte, and the
number of 2S6-byte pages used. The optional
form E:Name (where Name is a global symbol
previously defined in one of the modules)
uses Name for the start address of the
program. Use /E to load a program and exit
back to the monitor.

Start execution of the program as soon as the
current command line has been interpreted.
",1-. _ _"'" __ L _.,...,... ~ _. '...., - 1

--- - -.J. - -_ ---- --.1 -- -,- ...,;'--....,"' ... \.,.."'"' ""'..... '- e

current disk to satisfy any existing
undefined globals if they exist. Before
execution actually begins, LINK-SO prints
three numbers and a BEGIN EXECUTION message.
The three numbers are the start address, the
address of the next available byte, and the
number of 2S6-byte pages used. The optional
form G:Name (where Name is a global symbol
previously defined in one of the modules)
uses Name for the start address of the
program.

If a <filename>/N is specified, the program
will be saved on disk under the selected name
(with a default extension of .COM for CP/M)
when a /E or /G is done. A jump to the start
of the program is inserted if needed so the
program can run properly (at IOOH for CP/M).

LINK-80 LINKING LOADER PAGE 4-5

P and D

u

M

S

/P and /D allow the origin(s) to be set for
the next program loaded. /P and /D take
effect when seen (not deferred), and they
have no effect on programs already loaded.
The form is /P:<address> or /D:<address>,
where <address> is the desired origin in the
current typeout radix. (Default radix is
hex. /0 sets radix to octal; /H to hex.)
LINK-80 does a default /p:<link origin>+3
(i.e., 103H for CP/M and 4003H for ISIS) to
leave room for the jump to the start address.
NOTE: Do not use /P or /D to load programs
or data into the locations of the loader's
jump to the start address (IOOH to 102H for
CP/M) unless it is to load the start of the
program there. If programs or data are
loaded into these locations, the jump will
not be generated.

If no /D is given, data areas are loaded
before program areas for each module. If a
/D is given, all Data and Common areas are
loaded starting at the data origin and the
program area at the program origin. Example:

*/P:200,FOO
Data 200 300
*/R
*/P:200 /D:400,FOO
Data 400 480
Program 200 280

List the origin and end of the program and
data area and all undefined globals as soon
as the current command line has been
interpreted. The program information is only
printed if a /D has been done. Otherwise,
the program is stored in the data area.

List the origin and end of the program and
data area, all defined globals and their
values, and all undefined globals followed by
an asterisk. The program information is only
printed if a /D has been done. Otherwise,
the program is stored in the data area.

Search the filename immediately preceding the
/S in the command string to satisfy any
undefined globals.

LINK-80 LINKING LOADER PAGE 4-6

4.2.2 CP/M LINK-80 Switches

The following switches apply to CP/M versions only.

x

Y

If a filename/N was specified, /X will cause
the file to be saved in Intel ASCII HEX
format with an extension of HEX.

Example: FOO/N/X/E will create an Intel
ASCII HEX formatted load module named
FOO.HEX.

If a filename/N was specified, /Y will create
a filename.SYM file when /E is entered. This
file contains the names and addresses of all
Globals for use with Digital Research's
Symbolic Debugger, SID and ZSID.

Example: FOO/N/Y/E creates FOO.COM and
FOO.SYM. MYPROG/N/X/Y/E creates MYPROG.HEX
and MYPROG.SYM.

4.2.3 Sample Links

LINK AND GO

A>L80
*EXAMPL,EXMPLI/G
DATA 3000 30AC
[304F 30AC 49]

[BEGIN EXECUTION]

A>

1792
14336

-16383
14

112

LINK AND SAVE

14336
-16383

14
112
896

A>L80
*EXAMPL,EXAMPLl,EXAM/N/E
DATA 3000 30AC
[304F 30AC 49]
A>

Loads and links EXAMPL.REL, EXMPLl.REL and creates
EXAM. COM.

LINK-80 LINKING LOADER

4.3 FORMAT OF LINK COMPATIBLE OBJECT FILES

NOTE

Section 4.3 is reference
material for users who wish to
know the load format of
LINK-80 relocatable object
files. Most users will want
to skip this section, as it
does not contain material
necessary to the operation of
the package.

PAGE 4-7

LINK-compatible object files consist of a bit stream.
Individual fields within the bit stream are not aligned on
byte boundaries, except as noted below. Use of a bit stream
for relocatable object files keeps the size of object files
to a minimum; thereby decreasing the number of disk
reads/writes.

There are two basic types of load items: Absolute and
Relocatable. The first bit of an item indicates one of
these two types. If the first bit is a 0, the following 8
bits are loaded as an absolute byte. If the first bit is a
1, the next 2 bits are used to indicate one of four types of
relocatable items:

00 Special LINK item (see below).

01 Program Relative. Load the following 16 bits
after adding the current Program base.

10 Data Relative. Load the following 16 bits after
adding the current Data base.

11 Common Relative. Load the following 16 bits
after adding the current Common base.

Special LINK items consist of the bit stream 100 followed
by:

a four-bit control field

an optional A field consisting of a two-bit
address type that is the same as the two-bit
field above except 00 specifies absolute address

an optional B field consisting of 3 bits that
give a symbol length and up to 8 bits for each
character of the symbol

LINK-80 LINKING LOADER PAGE 4-8

A general representation of a special LINK item is:

1 00 xxxx yy nn zzz + characters of symbol name

A field B field

xxxx
yy
nn
zzz

Four-bit control field (0-15 below)
Two-bit address type field
Sixteen-bit value
Three-bit symbol length .field

The following special types have a B-field only:

a "Entry symbol (name for search)
1 Select COMMON block
2 Program name
3 Request library search
4 Extension LINK items (see below)

The following special LINK items have both an A field and a
B field:

5 Define COMMON size
6 Chain external (A is head of address chain, B is

name of external symbol)
; no F'; .,., n n.,., +- ,... .. ~ "''''.;........ 17\ .; ~ -.riri,.....,........ n.;....... _ - ,

The following special LINK items have an A field only:

8 External - offset. Used for JMP and CALL to
externals

9 External + offset. The A value will be added to
the two bytes starting at the current location
counter immediately before execution.

10 Define size of Data area (A is size)
11 Set loading location counter to A
12 Chain address. A is head of chain, replace all

entries in chain with current location counter.
The last entry in the chain has an address field
of absolute zero.

13 Define program size (A is size)
14 End program (forces to byte boundary)

LINK-aD LINKING LOADER PAGE 4-9

The following special Link item has neither an A nor a B
field:

15 End file

An Extension LINK item follows the general format of a
B-field-only special LINK item, but contents of the B-field
are not a symbol name. Instead, the symbol area contains
one character to identify the type of Extension LINK item,
followed by from 1 to 7 characters of additional
information.

Thus, every Extension LINK item has the format:

1 00 0100 zzz i jjjjjjj

where

zzz may be any three bit integer (with 000
representing a) ,

i is an eight bit Extension LINK item type
identifier, and

jjjjjjj are zzz-l eight bit characters of
information whose significance depends on i

At present, there is only one Extension LINK item:

i = X'35' COBOL overlay segment sentinel

zzz = 010 (binary)

j = COBOL segment number -49 (decimal)

When the overlay segment sentinel is encountered by the
linker, the current overlay segment number is set to the
value of j+49. If the previously existing segment
number was non-zero and a IN switch is in effect, the
data area is written to disk in a file whose name is the
current program name and whose extension is Vnn, where
nn are the two hexadecimal digits representing the
number j+49 (decimal).

LINK-SO LINKING LOADER PAGE 4-10

4.4 LINK-SO ERROR MESSAGES

LINK-SO has the following error messages:

?No Start Address

?Loading Error

?Out of Memory

?Command Error

?<file> Not Found

A /G switch was issued, but no main
program had been loaded.

The last file given for input was not a
properly formatted LINK-SO object file.

Not enough memory to load program.

Unrecognizable LINK-SO command.

<file>, as given in the command string,
did not exist.

%2nd COMMON Larger /XXXXXX/
The first definition of COMMON block
/XXXXXX/ was not the largest definition.
Reorder module loading sequence or
change COMMON block definitions.

%Mult. Def. Global YYYYYY
More than one definition for the global
I ,: "" ~, \ ,.. .. ",.... '"' , 'I: T'\7''l:7'1:.7' ",'U" • __ ,.. __ ._ _ _ .• _ . .:J . ~. - - - --
during the loading process.

%OVerlaYing { program} Area
Data

,Start = xxxx
,Public = <symbol name> (xxxx)
,External = <symbol name> (xxxx)
/P will cause already loaded
be destroyed.

?Intersecting

A /0 or
data to

{
program} Area
Data

The program and data area intersect and
an address or external chain entry is in
this intersection. The final value
cannot be converted to a current value
since it is in the area intersection.

?Start Symbol - <name> - Undefined
After a /E: or /G: is given, the
symbol specified was not defined.

LINK-SO LINKING LOADER PAGE 4-11

Or ig in f Above) Loader Memory, Move Anyway (Y or N)?
\ Below

After a IE or /G was given, either the
data or program area has an or1g1n or
top which lies outside loader memory
(i.e., loader origin to top of memory).
If a Y <cr> is given, LINK-SO will move
the area and continue. If anything else
is given, LINK-SO will exit. In either
case, if a IN was given, the image will
already have been saved.

?Can't Save Object File
A disk error occurred when the file was
being saved.

4.5 PROGRAM BREAK INFORMATION

LINK-80 stores the address of the first free location in a
global symbol caiiea $MEMRY 1r that symbol has been defined
by a program loaded. $MEMRY is set to the top of the data
area +1.

NOTE

If 10 is given and the data
or1g1n is less than the
program area, the user must be
sure there is enough room to
keep the program from being
destroyed. This is
particularly true with the
disk driver for FORTRAN-SO
which uses $MEMRY to allocate
disk buffers and FCB's.

CHAPTER 5

LIB-80 LIBRARY MANAGER

(CP/M Versions Only)

LIB-80 is the object time library manager for CP/M versions
of FORTRAN-80 and COBOL-80. LIB-80 will be interfaced to
other operating systems in future releases of FORTRAN-80 and
COBOL-80.

WARNING

Read this chapter carefully
and make a back-up copy of
your libraries before using
LIB. It is not difficult to
destroy a library with LIB-80.

5.1 LIB-80 COMMANDS

To run LIB-80, type LIB followed
LIB-80 will return the prompt "*"
accept commands. Each command
information about a library or
library under construction.

by a carriage return.
indicating it is ready to
in LIB-80 either lists
adds new modules to the

Commands to LIB-80 consist of an optional destination
filename which sets the name of the library being created,
followed by an equal sign, followed by module names
separated by commas. The default destination filename is
FORLIB.LIB. Examples:

*NEWLIB=FILEl <MOD2> , FILE3,TEST

*SIN,COS,TAN,ATAN

LIB-SO LIBRARY MANAGER PAGE 5-2

Any command specifying a set
modules selected onto the
filename given. Therefore,

of modules
end of the

concatenates the
last destination

*FILEl,FILE2 <BIGSUB>, TEST

is equivalent to

*FILEI
*FILE2 <BIGSUB>
*TEST

5.1.1 Modules

A module is typically a FORTRAN or COBOL subprogram,
program or a MACRO-SO assembly that contains
statements.

main
ENTRY

The primary function of LIB-SO is to concatenate modules in
.REL files to form a new library. In order to extract
modules from previous libraries or .REL files, a powerful
syntax has been devised to specify ranges of modules within
a .REL file.

The simplest way to specify a module within a file is simply
to use the name of the module. For example:

SIN

But a relative quantity plus or minus 255 may also be used.
For example:

SIN+l

specifies the module after SIN and

SIN-l

specifies the one before it.

Ranges of modules may also be specified by using two dots:

.• SIN means all modules up to and including
SIN.

SIN •. means all modules from SIN to the end
of the file.

SIN •• COS means SIN and COS and all the
modules in between.

LIB-SO LIBRARY MANAGER PAGE 5-3

Ranges of modules and relative offsets may also be used in
combination:

SIN+l •• COS=l

To select a given module from a file, use the name of the
file followed by the module(s) specified enclosed in angle
brackets and separated by commas:

FORLIB <SIN •• COS>

or

MYLIB.REL <TEST>

or

BIGLIB.REL <FIRST,MIDDLE,LAST>

etc.

If no modules are selected from a file, then
in the file are selected:

TESTLIB.REL

5.2 LIB-SO SWITCHES

NOTE

/E will destroy your current
library if there is no new
library under construction.
Exit LIB-SO using Control-C if
you are not revising the
library.

a " ~~ the modules

A number of switches are used to control LIB-SO operation.
These switches are always preceded by a slash:

/0 Octal - set Octal typeout mode for /L
command.

/H Hex - set Hex typeout mode for /L
command (default).

/U List the symbols which would remain
undefined on a search through the
file specified.

LIB-SO LIBRARY MANAGER

/L List the modules in the files specified
and symbol definitions they contain.

IC (Create) Throwaway the library under
construction and start over.

/E Exit to CP/M. The library under
construction (.LIB) is revised to .REL
and any previous copy is deleted.

NOTE

IE will destroy your current
library if there is no new
library under construction.
Exit LIB-SO using Control-C if
you are not revising the
library.

IR Rename - same as IE but does not exit
to CP/M on completion.

5.3 LIB-SO LISTINGS

PAGE 5-4

To list the contents of a file in cross reference format,
use IL:

*FORLIB/L

When building libraries, it is important to order the
modules such that any intermodule references are "forward."
That is, the module containing the global reference should
physically appear ahead of the module containing the entry
point. Otherwise, LINK-SO may not satisfy all global
references on a single pass through the library.

Use Iu to list the symbols which could be undefined in a
single pass through a library. If a module in the library
makes a backward reference to a symbol in another module, /U
will list that symbol. Example:

*SYSLIB/U

NOTE: Since certain modules in the standard FORTRAN and
COBOL systems are always force-loaded, they will be listed
as undefined by /U but will not cause a problem when loading
FORTRAN or COBOL programs.

Listings are currently always sent to the terminal; use
control-P to send the listing to the printer.

LIB-80 LIBRARY MANAGER

5.4 SAMPLE LIB SESSION

BUILDING A LIBRARY:

A>LIB
*TRANLIB=SIN,COS,TAN,ATAN,ACOG
*EXP
*/E
A>

LISTING A LIBRARY:

A>LIB *TRANLIB.LIB/U
*TRANLIB.LIB/L

(List of symbols in TRANLIB.LIB)

*Control-C
A>

5.5 SUMMARY OF SWITCHES AND SYNTAX

/0 Octal - set listing radix
/H Hex - set listing radix
/U List undefineds
/L List cross reference
/C Create - start LIB over
/E Exit - Rename .LIB to .REL and exit
/R Rename - Rename .LIB to .REL

module::=module name {+ or - number}

module sequence ::=

module I •• module I module •• I modulel •• module2

PAGE 5-5

file specification::=filename {<module sequence>{,<module sequence>}}

command::= {library filename=} {list of file specifications}
{list of switches}

$INCLUDE •
$MEMRY •

.COMMENT •

.CREF • • • •
• DEPHASE • • • •
• LALL • • •
.LFCOND •••••
.LIST •••••••
• PAGE • • • • • • • •
.PHASE •
.PRINTX ••••••

INDEX

• 2-14
• • • 4-11

• 2-16
• • • 2-23
• • • 2-25

• 2-23
• • • 2-20
• • • 2-20

• • 2-37
• • • 2-25

2-17
• RADIX • • •• 2-6, 2-17
.REQUEST • • • • • • • 2-18
.SALL • • • • • •• 2-23
• SFCOND • • • • 2-20
.TFCOND • •• • ••••• 2-20
.XALL • • • • • • • • • • 2-23
• XCREF • • • • • • 2-23
.XLIST • • • • • • • • 2-20

Absolute memory • • • • •
Arithmetic operators ••
ASEG • • • •

• • 2-8, 2-11, 2-38
• 2-8

• • 2-8, 2-11, 2-24

Block pseudo ops • • • •

Character constants
Code Relative
Command format • • • • •
Comments • • •
COMMON • • •

Conditionals • • •••
Constants • • • • •
CP/M • . • • •

• 2-25

• • 2-7
• 2-11, 2-24 to 2-25, 2-38
• 2-1, 3-1, 4-1, 5-1
• 2-6, 2-16

2-8, 2-11, 2-24 to 2-25,
2-38 to 2-39

• • 2-19
• 2-6

• •• 2-2 to 2-3, 4-4 to 4-6,
5-1, 5-4

Cross reference facility ••• 2-4, 2-23, 2-37, 3-1
CSEG • • • • • 2-8, 2-11, 2-24, 2-36

Data Relative

DB •
DC •
Define Byte • • • •
Define Character •
Define Origin
Define Space •
Define Word ••••••
os
DSEG • • • • • •
ow • . . . • •

• •• 2-8, 2-12, 2-24 to 2-25,
2-38

• 2-6, 2-11
• • • 2-12

• 2-6, 2-11
2-12

• 2-15
• 2-12

'1_1"l
• &"'-.J,...J

• • 2-12
• 2-8, 2-12, 2-24, 2-36

· • 2-13

EDIT-80 • 2-5, 2-37
ELSE • • • 2-20
END • • • . • 2-13
ENDIF • • • • • 2-20
ENDM • . • 2-25, 2-29
ENTRY • • • • • • 2-13, 5-2
EQU • . 2-14 to 2-15
Error codes ••••••••• 2-35, 2-37
Error messages • • •• 2-36, 4-10
EXITM • • • • • • • • • • • • 2-29
EXT • • • • • 2-14
Externals
EXTRN • • •

• • 2-9, 2-14, 2-35, 2-38
• 2-14

IF • • • 2-19
IF1 ••• • • • • • 2-19
IF2 ••• • • • • • 2-19
IFB • • • • • • • • • 2-19
IFDEF • • • • • • • • • 2-19
IFDIF • • • • • • • 2-19
IFE • • • • • • • • • • • • • 2-19
IFF • • • • 2-19
IFIDN • • • • • • • • • • • • 2-19
IFNB • • • • • • 2-19
1FT • • •• ••••••• 2-19
INCLUDE • • • • 2-14
INTEL • • • • • • • • • 2-36
IRP ••••••• 2-23, 2-25, 2-27
J..t'U::"\... • • • • •• ~-~~, ~-~~, ~-~I

ISIS-II • 2-2 to 2-3, 2-5, 4-5

LIB-80 • •
Library manager
LINK-80

Listings •

LOCAL • • •
Logical operators

MACLIB • • • • •

. 5-1
• • • 5-1

•••••• 2-11, 2-13,
4-1, 5-4

••••••• 2-14, 2-20,
3-2, 5-4

• • • • • • • 2-30
• • • • 2-8

2-18, 2-25,

2-37 to 2-38,

MACRO • • • • • • •
Macro operators
Modes

• • • • 2-14
••••• 2-23, 2-25 to 2-26, 2-28 to 2-29

Modules

NAME ••

Operators • • • •
ORG • • • •

• • • 2-30
· 2-8
· 5-2

• • 2-15

• • • • 2-8
· •• 2-11, 2-13, 2-15, 2-24

PAGE • • • • 2-15, 2-36
Program Relative • • • • • • • 2-8
PUBLIC. . ••••••• 2-5, 2-13, 2-39

REPT • • • 2-23, 2-25 to 2-26

SET • 2-15

Strings • • •
SUBTTL •
Switches
Symbol table •

2-7
• • 2-16, 2-36 to 2-37
• • 2-3, 3-1, 4-2, 5-3, 5-5
• • 2-37, 2-39

TITLE • 2-15 to 2-16, 2-37

MiCrOSOft Utility ::;oftware Manual
121797-001

REQUEST FOR READER'S COMMENTS

Intel's Technical Publications Departments attempt to provide publications that meet the needs of all Intel
product users. This form lets you participate directly in the publication process. Your comments will help
us correct and improve our publications. Please take a few minutes to respond.

Please restrict your comments to the usability, accuracy, readability, organization, and completeness of
this publication. If you have any comments on the product that this publication describes, please contact
your Intel representative. If you wish to order publications, contact the Intel Literature Department (see
page ii of this manual).

1. Please describe any errors you found in this publication (include page number).

2. Does the publication cover the information you expected or required? Please make suggestions for
improvement.

3. Is this the right type of publication for your needs? Is it at the right level? What other types of
publications are needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this publication on a scale of 1 to 5 (5 being the best rating). ________ _

NAME ________________________ __ DATE _____________ __

TITLE ___________________________________ ___

COMPANYNAME/DEPARTMENT ___________________________ __
ADDRESS __________________________________ __

CITY ______________ _ STATE ______ __ ZIP CODE ______ _

(COUNTRY)

Please check here if you require a written reply. 0

WE'D LIKE YOUR COMMENTS •••

This document is one of a series describing Intel products. Your comments on the back of this form will
help us produce better manuals. Each reply will be carefully reviewed by the responsible person. All
comments and suggestions become the property of Intel Corporation.

BUSINESS REPLY MAIL

POSTAGE WILL BE PAID BY ADDRESSEE

Intel Corporation
Attn: Technical Publications MIS 6-2000
3065 Bowers Avenue
Santa Clara, CA 95051

NO POSTAGE
NECESSARY

IF MAILED
IN U.S.A.

inter
INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, California 95051 (408) 987-8080

Printed in U.S.A.

