

ASM86 Macro Assembler Error Messages and Recovery

IIIERROR '125 EVEN DIRECTIVE MAY NOT BE USED IN
BYTE-ALIGNED SEGMENT

In order to guarantee even address alignment, a segment containing an EVEN
directive must not be BYTE aligned.

IIIERROR 1126 PAGEWIDTH BELOW MINIMUM, SET TO 60

The minimum pagewidth value is 60. If a pagewidth value less than 60 is given, it is
increased to 60.

IIIERROR 1127 PAGELENGTH BELOW MINIMUM, SET TO 20

The minimum page length value is 20. If a value less than 20 is requested, it is
increased to 20.

IIIERROR 1128 ILLEGAL OR UNDEFINED GROUP ELEMENT

An item in the list in a GROUP statement must be a segment name and must eventu­
ally be defined. Any other item, in particular a group-name, is illegal. It is possible
for the SEG operator to return a group-name if the operand to SEG was defined with
EQU to have a group as its segment attribute; i.e.:

FOO
G

EQU A_GROUP:BYTE
GROUP SEG FOO

PTR 3

will cause this error (A _ GROUP is a previously defined group).

IIIERROR 1129 FWD-REF EQUATE CHAIN MAY NOT RESOLVE
TO F-STACK, LONG-INT, DR REAL NUMBER

Forward references to floating-point stack elements, long integers, or real numbers
are illegal.

IIIERROR 1130 INDEX FOR FLOATING-POINT STACK ELEMENT
MUST BE AN ABSOLUTE NUMBER

The index for a floating-point stack element must be a number or the result of an
expression that can be calculated or known at assembly time. The index cannot be
any form of relocatable quantity.

IIIERROR 1131 INDEX FOR FLOATING-POINT STACK ELEMENT
OUT-OF-RANGE

The index for the floating-point stack must be in the range 0 to 7, inclusive.

fllERROR '132 ILLEGAL USE OF LONG INTEGER CONSTANT
OR DECIMAL REAL NUMBER

The use of long integers (requiring more than 17 bits to represent) and decimal real
numbers in expressions is very restricted; this message appears for some cases when
a long integer or decimal real number is used illegally in an expression.

A-21

Error Messages and Recovery ASM86 Macro Assembler

A-22

···ERROR 1133 ILLEGAL OPERAND FOR UNARY MINUS DR NOT

Error 133 will occur whenever unary logical or mathematical negation is not permit­
ted. Such cases include (but are not limited to) hex-real numbers, for which negation
is disallowed, group or segment names, and labels.

···ERROR 1134 CANNOT USE A RELOCATABLE NUMBER FOR
DD, DG, DR DT INITIALIZATION

External absolute numbers cannot be used in these initializations because it is impos­
sible to determine at assembly-time how to sign-extend the number into the high­
order bytes. All other relocatable numbers are disallowed for the same reason. With
the exception of variables and labels, which are allowed in DD's, as long as they
require 4 bytes to represent (base and offset).

···ERROR 1135 HUMBER IS TOO LARGE FOR CONVERSION TO
PACKED-DECIMAL FORMAT

There are some 64-bit integer values that cannot be represented in packed-decimal
form. The approximate range of 64-bit binary numbers is ± 1.8*1019, whereas the
range of values that can be represented by the packed-decimal format is
approximately -1018 + 1 to 1018 - 1.

···ERROR 1136 TYPE OF R-FORMAT REAL MUST MATCH
STORAGE INITIALIZATION TYPE EXACTLY

The R-format Hex-real representation permits you to specify the exact bit pattern
you wish to store. The assembler will not allow you to specify the bit pattern for a
DWORD (4 bytes) and place this value in a QWORD (8 bytes), since the conversion
from 4 to 8 bytes would defeat the purpose of the R-format. Similarly, you may not
specify 8 bytes and try to force it into a DWORD.

·'·ERROR 1137 R-FORMAT REAL NUMBER INCORRECTLY
SPECIFIED

R-format numbers must conform to the following:

Single precision
Double precision
Temp-real values

4 bytes
8 bytes
10 bytes

8 or 9 digits
16 or 17 digits
20 or 21 digits

If the number of digits is odd, then the first digit must be a O.

"·ERROR 1138 INTEGER CONSTANT IS TOO LARGE

Only those values that can be represented in 64 bits can be stored internally.

·'·ERROR 1139 CANNOT USE A DECIMAL REAL NUMBER FOR
DB DR DW INITIALIZATION

No floating-point representation can fit into one byte or one word, 'so decimal real
numbers are not allowed in DB or DW statements.

ASM86 Macro Assembler Error Messages and Recovery

···ERROR ·1140 DECIMAL REAL NUMBER CANNOT BE
REPRESENTED IN THE INTERNAL FORM

This indicates an error in conversion from decimal to temp real, which implies that
the number is too large or too small to be represented in the temp-real format.

···ERROR 1141 DECIMAL REAL NUMBER CANNOT BE
CONVERTED TO THE STORAGE INITIALIZATION TYPE
SPECIFIED

The decimal real number stored internally in the temp-real format is either too large
or too small for conversion to single or double precision external representation.

···ERROR 1142 ILLEGAL OPERAND TO THIS OPERATOR

The THIS operator only accepts a type specifier or a small-integer absolute number
as an operand.

···ERROR 1143 CS-IP NOT INITIALIZED, REQUIRED FOR
MAIN MODULE

There is no CS-IP initialization in the END statement. This initialization, which
provides the starting address, is necessary for the main module.

···ERROR 1144 IDENTIFIER NOT A VARIABLE OR LABEL

An identifier that is not a variable or label is used as such in an END statement
initialization.

···ERROR 1145 IDENTIFIER MUST BE LABEL FOR A CS-IP
INITIALIZATION

The identifier used in the CS-IP initialization must be a label, either:

CS:label

or

label

would be legal. Check the definition of the indicated identifier.

···ERROR 1146 IDENTIFIER MUST BE A VARIABLE FOR
SS-SP INITIALIZATION

The correct form is SS:segname:variable, SS:groupname:variable or SS:segname.
Check to see that the indicated identifier is, indeed, a variable.

A-23

Error Messages and Recovery ASM86 Macro Assembler

A-24

fffERROR 1147 VARIABLE OR LABEL NOT ALLOWED WITH DS
INTIALIZATION

The use of variables or labels is not permitted. The only legal Iorms for DS initiali­
zation are DS:segname and DS:groupname.

fffERROR 1148 IDENTIFIER IS NOT A SEGMENT OR GROUP

The identifier in question is expected to be a segment or group name, but is not.

fffERROR 1149 INITIALIZATION OF ES IS NOT ALLOWED

You cannot initialize the ES register in the END statement.

fftERROR 1150 UNDEFINED SYMBOL IN INITIALIZATION

All identifiers must be defined before they are used in an initialization.

fftERROR 1151 NO NAME DIRECTIVE ENCOUNTERED,
DEFAULT MODULE NAME USED

Every module must contain the NAME directive to name the object module. If the
NAME directive is omitted, then the name ANONYMOUS is used.

fftERROR 1152 ILLEGAL DUPLICATE INITIALIZATION FOR
A SEGMENT REGISTER

There is more than one initialization in the END statement for the same segment
register.

fftERROR 1153 EXTERNAL NOT ALLOWED FOR
INITIALIZATION

Because the value of the external symbol cannot be known at assembly-time, the
initialization cannot be completed.

fffERROR 1154 SS INITIALIZATION WITH GROUP REQUIRES
A VARIABLE

As stated in the discussion of error # 146, the correct form for SS initialization is
SS:segname:variable, SS:groupname: variable, or SS:segname. You have left out the
variable.

fffERROR 1155 DUPLICATE PUBLIC DECLARATION FOR
SYMBOL-IGNORED

A symbol previously defined as Public is being declared Public again. The assembler
ignores such duplicate declarations.

ASM86 Macro AsselDbler Error Messages and Recovery

···ERROR '156 CANNOT PURGE REGISTER

A register name cannot be used in a purge directive. However, a symbol equated to
a register name can be purged.

···ERROR '157 iAPX186 INSTRUCTION REGUIRES SMOD186
CONTROL

The default state of the assembler is 8086 only mode. If assembling programs written
for the iAPXI86, use the primary control MODI86.

Macro Error Messages

Error messages with numbers in the 300's indicate macro call/expansion errors. Macro
errors are followed by a trace of the macro call/expansion stack. Each error is followed
by a series of lines that print out the nesting of macro calls, expansions, include files,
and so forth.

···ERROR '301 UNDEFINED MACRO NAME

The text following a metacharacter (%) is "not a recognized user function name or
built-in macro function. The reference is ignored and processing continues with the
character following the name.

···ERROR '302 ILLEGAL EXIT MACRO

The built-in macro EXIT is not valid in this context. The call is ignored. A call to
EXIT must allow an exit through a user function, or through the WHILE or REPEAT
built-in functions.

···ERROR '303 FATAL SYSTEM ERROR

Loss of hardware and/or software integrity was discovered by the macro processor.
Contact Intel Corporation.

···ERROR '304 ILLEGAL EXPREiSION

A numeric expression was required as a parameter to one of the built-in macros EV AL,
IF, WHILE, REPEAT, and SUBSTR. The built-in function call is aborted, and
processing continues with the character following the illegal expression.

···ERROR '305 MISSING "FI" IN "IF"

The IF built-in function did not have a FI terminator. The macro is processed
normally.

···ERROR '306 MISSING "THEN" IN "IF"

The IF built-in function did not have a THEN clause following the conditional
expression clause. The call to IF is aborted and processing continues at the point in
the string at which the error was discovered.

A-25

Error Messages and Recovery ASM86 Macro AsselDbier

A-26

···ERROR 1307 ILLEGAL ATTEMPT TO REDEFINE MACRO

It is illegal to have a built-in function name or a parameter name be redefined (with
the DEFINE or MATCH built-ins). Also, a user function cannot be redefined inside
an expansion of itself.

···ERROR 1308 MISSING IDENTIFIER IN DEFINE PATTERN

In a DEFINE, the occurrence of@ indicated that an identifier type delimiter followed.
It did not. The DEFINE is aborted and scanning continues from the point at which
the error was detected.

···ERROR 1309 MISSING BALANCED STRING

A balanced string, (•••) in a call to a built-in function is not present. The macro
function call is aborted and scanning continues from the point at which the error was
detected.

··-ERROR 1310 MISSING LIST ITEM

In a built-in function, a parenthesized parameter is missing. The macro function call
is aborted and scanning continues from the point at which the error was detected.

··-ERROR 1311 MISSING DELIMITER

A delimiter required by the scanning of a user-defined function is not present. The
macro function call is aborted and scanning continues from the point at which the
error was detected.

This error can occur only if a user function is defined with a call pattern containing
two adjacent delimiters. If the first delimiter is scanned, but is not immediately
followed by the second, this error is reported.

···ERROR 1312 PREMATURE EOF

The end of the input file occurred while the call to the macro was being scanned.
This usually occurs when a delimiter to a macro call is omitted, causing the macro
processor to scan to the end of the file searching for the missing delimiter. Note that
even if the closing delimiter of a macro call is given, if any preceding delimiters are
not given, this error may occur, since the macro processor searches for delimiters one
at a time.

···ERROR 1313 DYNAMIC STORAGE (MACROS DR ARGUMENTS)
OVERFLOW

Either a macro argument is too long (possibly because of a missing delimiter), or not
enough space is available because of the number and size of macro definitions. All
pending and active macros and INCLUDEs are popped and scanning continues in
the primary source file. (See also the discussion of the Macro control in Chapter 3 of
this manual.)

ASM86 Macro Assembler Error Messages and Recovery

···ERROR '314 MACRO STACK OVERFLOW

The macro context stack has overflowed. This stack is 64 deep and contains an entry
for each of the following items:

1. Every currently active input file (primary source plus currently nested
INCLUDEs).

2. Every pending macro call, that is, all calls to macros whose arguments are still
being scanned.

3. Every active macro call, that is, all macros whose values or bodies are currently
being read. Included in this category are various temporary strings used during
the expansion of some built-in macro functions.

The cause of this error is excessive recursion in macro calls, expansions, or
INCLUDEs. All pending and active macros and INCLUDEs are popped and scanning
continues in the primary source file.

···ERROR '315 INPUT STACK OVERFLOW

The input stack is used in conjunction with the macro stack to save pointers to strings
under analysis. The cause and recovery is the same as for macro stack overflow.

···ERROR '317 PATTERN TOO LONG

An element of a pattern, an identifier, or a delimiter, is longer than 31 characters, or
the total pattern is longer than 255 characters. The DEFINE is aborted and scanning
continues from the point at which the error was detected.

···ERROR '318 ILLEGAL METACHARACTER: "char"

The METACHAR built-in function has specified a character that cannot legally be
used as a metacharacter: a blank, letter, numeral, left or right parenthesis, or
asterisk. The current metacharacter remains unchanged.

···ERROR '319 UNBALANCED) IN ARGUMENT TO USER
DEFINED MACRO

During the scan of a user-defined macro, the parenthesis count went negative,
indicating an unmatched right parenthesis. The macro function call is aborted and
scanning continues from the point at which the error was detected.

···ERROR '320 ILLEGAL ASCENDING CALL

Ascending calls are not permitted in the macro language. If a call is not complete
when the end of a macro expansion is encountered, this message is issued and the call
is aborted. A macro call beginning inside the body of a user-defined or built-in macro
was incompletely contained inside that body, possibly because of a missing delimiter
for the macro call.

Control Error Messages

Control errors are announced when something is wrong with a control line in the
source fIle.

A-27

Error Messages and Recovery ASM86 Macro Assembler

A-28

***ERROR '401 BAD PARAMETER TO CONTROL

What appears to be the parameter to a control is not correctly formed. This may be
caused if the parameter has a missing right parenthesis or if parentheses are not
correctly nested, or it is out of bounds, or the wrong type, etc.

***ERROR '402 MORE THAN ONE INCLUDE CONTROL ON A
SINGLE LINE

ASM86 allows a maximum of one INCLUDE control on a single line. If more than
one INCLUDE control appears on a line, only the first (leftmost) is included, the
rest are ignored.

***ERROR '403 BAD DELIMITER IN COMMAND

When scanning a command line or the invocation line, ASM86 is either looking for
a letter (to start a control) or a left parenthesis (to start a parameter) or a right
parenthesis (to end a parameter). If some other character is encountered, then this
error is issued.

***ERROR '407 UNRECOGNIZED CONTROL OR MISPLACED
P RIM A R Y C 0 H T R 0 L: control-name

The indicated control is not recognized as an ASM86 control in this context. It may
be misspelled, mistyped, or incorrectly abbreviated.

A misplaced primary control is a likely cause of this error. Primary control lines must
be at the start of the source file, preceding all non-control lines (even commments
and blank lines).

***ERROR '408 NO TITLE FOR TITLE CONTROL

This error is issued if the title control has no parameter. The new title will be the
empty string.

***ERROR '409 NO PARAMETER ALLOWED WITH ABOVE
CONTROL

The following controls do not have parameters:

EJECT
SAVE
RESTORE
LIST
NOLIST
GENONLY
GEN
NOGEN

If one is included, then this error will be issued, and the parameter will be ignored.

ASM86 Macro Assembler Error Messages and Recoyery

fffERROR 1410 SAVE STACK OVERFLOW

The save stack has a depth of eight. If the program tries to save more than eight
levels, then this error message will be printed.

fffERROR 1411 SAVE STACK UNDERFLOW

A RESTORE command is encountered and there has been no corresponding SA VE
command.

fffERROR 1413 SAVE, RESTORE, AND EJECT ARE NOT
ALLOWED IN THE COMMAND LINE

Since these controls have no effect in the ASM86 command line, they are illegal
there.

fffERROR 1800 UNRECOGNIZED ERROR MESSAGE NUMBER

fffERROR 1802 INTERMEDIATE FILE READING
UNSYNCHRONIZED

fffERROR 1803 BAD OPERAND STACK RECORD

fffERROR 1804 BAD OPERAND STACK READ REQUEST

fffERROR 180S BAD OPERAND STACK POP REQUEST

f'fERROR 1806 PARSE STACK UNDERFLOW

f"ERROR 1807 AUXILIARY STACK UNDERFLOW

ft'ERROR 1808 BAD AUXILIARY STACK READ REQUEST

fffERROR 1809 BAD OPERAND STACK TYPE IN EXPRESSION

f'fERROR 1810 BAD STORAGE INITIALIZATIOH RECORD

"fERRORS 1812, 1813 INSTRUCTION OPERAND HAS
IMPOSSIBLE TYPE

fffERROR 1814 LISTING INTERMEDIATE FILE READING
UHSYHCHRONIZED

Error messages in the 800's should never occur. If you get one of these error messages,
and all the other errors in your program have been corrected, please notify Intel
Corporation via the Software Problem Report included in this manual.

ff'ERROR 1900 USER SYMBOL TABLE SPACE EXHAUSTED

You must either eliminate some symbols from your program, or break your program
into smaller modules.

A-29

Error Messages and Recovery ASM86 Macro Asselllbler

A-30

**·ERROR '901 PARSE STACK OVERFLOW

This error will be given only for grammatical entities far beyond the complication
seen in normal programs.

·*·ERROR '902 OVERFLOW IN OPERAND STACK-TOO MANY
ELEMENTS

This error typically occurs when a list of storage initialization elements is too long -:­
about 20 elements, depending on the complication of the last elements. You can correct
this by breaking your initialization up into several lines.

·**ERROR '903 OVERFLOW IN OPERAND STACK-ELEMENTS
TOO COMPLICATED

This error is similar to error 902. You should break your list of elements into several
lines.

·**ERROR '904 AUXILIARY STACK OVERFLOW

This error indicates that one of ASM86's minor stacks has overflowed. This can come
about through excessively complicated storage initialization operands, or by
excessively deep nesting of SEGMENTs and PROCs.

·**ERROR '905 INTERMEDIATE FILE BUFFER OVERFLOW

This error indicates that a single source line has generated an excessive amount of
information for pass 2 processing. In practice, the limit should be reached only for
lines with a gigantic number of errors - correcting the other errors should make this
one go away.

··*ERROR '906 USER NAME TABLE SPACE EXHAUSTED

This error indicates that the sum of the number of characters used to define the set
of symbols contained in a source file exceeds the assembler's capacity. Either use
shorter symbol names or break your program into smaller modules. (See also the
discussion of the Macro control in Chapter 3 of this manual.)

APPENDIX B
LINKING ASSEMBLY LANGUAGE

AND HIGHER LEVEL LANGUAGES

This appendix describes the data passing and data definition conventions used to link
assembly language programs to programs written in high-level languages. In short, it
explains how programs coded in ASM86 can communicate with programs coded in
such languages as PL/M-86, Pascal-86, or FORTRAN-86. Some of the information
provided may also be of interest to the assembly language "purist." For example, you
may want to use a high-level language procedural interface even if your entire program
is coded in assembly language. For more detailed information on each higher level
language, consult the user's guide for that language.

Examples are provided for the simple SMALL, COMPACT, MEDIUM, and LARGE
segmentation models, as well as for subsystems. Note that FORTRAN-86 supports
only the LARGE model, and Pascal-86 does not support the MEDIUM model.

The Procedural Interface

When you write assembly language procedures to be called by high-level language
code, and when you call high-level language procedures from assembly language, you
must conform to the procedural interface conventions used by high-level languages.
Simply put, the assembly language code that "talks to" high-level code must do what
high-level code expects it to do.

Passing Parameters on the 8086

All functional and procedural parameters are passed on the run-time stack. Byte,
word, and integer arguments (8-bit and 16-bit) are pushed onto the 8086 stack as
words. In the case of a byte argument, the value passed occupies the low-order byte
of the word pushed onto the stack; the high-order byte is undefined. Double-word
and long integer (32-bit) arguments are passed as two words.

Pointer parameters (addresses of variables and labels) are also pushed onto the stack.
Short pointers (offsets from segment register values) are passed as words on the stack,
while long pointers (complete base:offset addresses) are passed as two words: the base
word is pushed first, followed by the offset word.

The first seven real arguments are passed on the 8087 register stack with each
argument value occupying one 80-bit register. If there are more than seven real
argument values, the rest are passed on the 8086 stack.

Parameters are pushed onto the stack in left-to-right order (Pascal-86), or in the
order that they are seen in the call statement (PL/M-86 and FORTRAN-86). Since
the stack grows from higher locations to lower locations, the first argument occupies
the highest position on the stack. Because PL/M and FORTRAN parameters are
pushed onto the stack before the CALL instruction is executed, they are located above
the return address, which is also stored on the stack.

Retrieving Parameters from the Stack

A program written in assembly language and called from a high-level language may
access its parameters on the stack in either of two ways. One technique is to pop each
of the parameters off the stack and into either a register or a local variable. Another
met~od of accessing parameters passed on the run-time stack is to address them· using

B-1

Linking Assembly Language and Higber Level Languages ASM86 Macro Assembler

B-2

a BP-relative addressing mode. This is the technique used by high-level language
code. Establish SS:BP as a pointer to the same fixed offset as the data structure on
the stack containing the parameters, and then address the parameters using offsets
from BP.

Since high-level language procedures make heavy use of the BP register, assembly
language code used with high-level code must preserve the value of BP. When param­
eters are popped off the stack, BP may be preserved by simply not using this register.
However, since the "BP method" requires that BP be loaded with a new value, the
contents of BP must first be saved. The method used by high-level languages is to
first push its value (allowing you to safely load it with a new value), then restore its
old value with a pop before the procedure returns to its caller.

Choosing a Method to Access Parameters

The method you choose for accessing parameters depends on the nature of the proce­
dure you are writing. The pop method can be an effective optimization when all
parameters are popped into registers, since accessing registers is faster than accessing
memory. Consequently, the pop method should be considered first for short proce­
dures with few parameters.

If there are a number of parameters in your procedure, however, overhead for the
pop method (the sequence of POP instructions) can cancel the advantages gained
from register accessing. The pop method should not be used when register space is at
a premium, as in a procedure that does extensive calculations on temporary values
held in the registers. Another alternative is the BP method; its big advantage over the
pop method is that parameter values may be left unaltered and thus may be refer­
enced many times in the procedure.

Returning Values From Functions

A function is a procedure that returns a single value to its caller. PL/M-86 and
Pascal-86 functions return values in registers. Byte values are returned in AL, word
and integer values are returned in AX, and double-word and long integer values are
returned in DX:AX. Short pointers (offsets) are returned in BX, and long pointers
(base:offset) are returned in ES:BX.

Table B-1 summarizes the registers used to return simple variables for PL/M-86,
Pascal-86, and FOR TRAN-86.

Register

8086:
AL

AX

DX:AX

ES(sgmt)
BX(ofst)

BX(offst
only)

8087:
ST

Table B-1. Registers Used to Return Simple Values

PL/M-86 Type

BYTE

INTEGER,
WORD,or
SELECTOR

DWORD

POINTER (all
models except
SMALL RAM)

POINTER
(SMALL RAM)

REAL

Fortran-86 Type

INTEGER*1
LOGICAL*1

INTEGER*2
LOGICAL*2

INTEGER*4
LOG I CAL*4

REAL

Pascal-86 Type

CHAR, BOOLEAN, unsigned
subrange, or enumeration stored
in eight bits.

INTEGER, WORD, subrange,' or
enumeration stored in 16 bits.

LONGINT

Pointer (all models except
SMALL(-CONST IN DATA-»

Pointer (SMALL (-CONST IN
DATA-) model)

REAL, LONGREAL, TEMPREAL

ASM86 Macro Assembler Linking Assembly Language and Higher Level Languages

Register Conventions

High-level languages expect procedures and functions to preserve the values of BP,
SS, and DS. In an assembly language procedure to be called from high-level language
code, you must ensure that the appropriate registers are preserved. Calling a high­
level language procedure from assembly languages destroys the AX, BX, CX, DX,
SI, D I, and ES registers.

Models of Segmentation

In PL/M-86 and Pascal-86, there are controls that specify how program segments
are to be combined and addressed in memory. These compile-time controls are called
models of segmentation. The model of segmentation you choose will determine what
you must put in your assembly language SEGMENT and GROUP statements. The
model will also affect the particulars of the procedural interface - for example,
whether long (base:offset) or short (offset) pointers should be passed as parameters.

CGROUP and DGROUP

The code for a SMALL program is stored in a segment named CODE, the data is
stored in the DATA segment, and the stack in the STACK segment. Two other
segments, CONST and MEMORY, are also available to hold data values. The CODE
segment makes up CGROUP, which has its base in the CS register. The DATA,
STACK, and MEMORY segments are all members of DGROUP, which has its base
in DS (with an identical copy in SS). The CONST segment is by default a member
of DGROUP. PL/M-86 and Pascal-86 allow you to put it in DGROUP by specifying
-CONST IN CODE-, however, though this makes all pointers in long {32-bits}.

The SMALL Model

The SMALL segmentation model is easily summarized: code in one physical segment,
data and stack in another. It is used for programs that require no more than 64K of
code and 64K of combined data and stack. The advantage of the SMALL model is
that all pointers are merely 16-bit offsets. CS is fixed, so a JMP or CALL needs only
to change IP. DS and SS are fixed - to the same value - so only an offset is needed
to specify the address of a variable or item on the stack. The SMALL model offers
the tightest code and fastest execution time of all the models.

The COMPACT Model

The COMPACT model of segmentation differs only slightly from the SMALL model.
The CODE segment still makes up CGROUP, but now DGROUP contains only the
DATA and CONST segments. (As in the SMALL case, the CONST segment is put
in CGROUP only if -CONST IN CODE- is specified.) The STACK and MEMORY
segments stand alone, outside of any group. As a result, these segments may occupy
a full 64K bytes of memory.

Because variables on the stack have a different base from those in the data region,
long pointers (base:offset) are used with the COMPACT model. This means that the
POINTER date type in PL/M-86 is a two-word address, and that means the @
operator refers to a long address. Long pointers passed as parameters on the stack
occupy two words, with the base part pushed first, followed by the offset part. They
allow high-level language code to address data anywhere in the physical memory
space.

B-3

LiDkiag AsselDbly Language and Higher Leyel Languages ASM86 Macro Assembler

B-4

The MEDIUM Model

In this model, DGROUP is exactly the same as it is in SMALL, containing the DATA,
STACK, CONST (by default), and MEMORY segments. There is no CGROUP,
however; each module produces its own, non-combinable code segment. Thus, the key
feature of the MEDIUM model is that it allows large amounts of program code,
while limiting the total DATA, STACK, CONST, and MEMORY segments to 64K.

Because each module produces its own code segment, inter-module calls use the long
form of the CALL instruction; that is, they change both CS and IP. Therefore, calls
to assembly language procedures should be declared as type FAR in the ASM86
EXTRN statement.

The LARGE Model

The LARGE model, which is the only model used by FORTRAN-86, allows for
large amounts of both code and data. In this model, all code and data segments are
non-combinable, and no groups are used. Constants are stored not with the DATA
segments but with the CODE segments, unless you specify -CONST IN DA T A-.
There is still only one STACK segment, with the stack combine-type.

The LARGE model requires that inter-module calls use the long form of the CALL
instruction, which saves both CS and IP in the return address. Because data refer­
ences across modules refer to different base locations, all address parameters for inter­
module calls should be long pointers. Each module has its own local data segment;
therefore, a procedure to be called from other modules must save the caller's DS
value, set up DS so that its own local variables can be addressed, and then, before
returning, restore the caller's DS value.

Subsystems

A subsystem as defined in PLfM-86 and Pascal-86 is a collection of tightly coupled,
logically related modules that obey the same model of segmentation. (A program can
be made up of one or more subsystems.) Within a subsystem, calls and data refer­
ences are long or short depending on the segmentation model chosen. Between
subsystems, all calls are long, and most data references require 32-bit pointers. Any
object that must be accessible to modules outside its subsystem must be exported
from its subsystem.

When you declare an object in high-level languages as being exported from a subsys­
tem, it must be declared public in ASM86 using the FAR attribute. In other words,
the assembly language module should be written as though it conforms to the LARGE
segmentation model.

Templates

The diagram that follow are ASM86 source module templates to be used with the
SMALL, COMPACT, MEDIUM, and LARGE models of segmentation.
(FORTRAN-86 uses the LARGE model only; Pascal does not support MEDIUM.)
These templates shQw the assembly language statements that make up the framework
of each of the modules.

ASM8(i Macro Assembler LiIIkiIIg AsseIUIy l.aJlcuge aad Higher Leye' Languages

Using the Templates

The templates are designed to be used in a "fill in the blanks" fashion .. The basic
statements to be copied into your source are capitalized. The italicized statements
are placeholders for text to be supplied by you. These statements are instructions to
you - they should not be copied into your source file.

Each template contains SEGMENT statements for all the other segments used by
HLL code. You may define additional segments, as when you extend the SMALL
model, and you may omit segments that you will not be using. If you omit a segment
belonging to a group, you must remember not to name this segment in the GROUP
statement. For example, you may be using the SMALL model and have no need for
the CONST and MEMORY segments. If these are omitted from your source module,
then the GROUP statement for DGROUP should only mention the DATA and
STACK segments:

DGROUP GROUP DATA, STACK

Below each template is a notes section, which briefly summarizes some of the
programming considerations associated with the model. You should keep these in
mind as you build your assembly language module from a particular template.

B-5

Linking AsselDbly Langage and Higher Level Languages ASM86 Macro AsselDbler

B-6

The Small Model of Segmentation

N A M E module-name

·CGROUP GROUP ·CODE
DGROUP GROUP CONSTS, DATA, STACK, MEMORY

ASSUME ·CS:CGROUP, DS:DGROUP, SS-DGROUP

CONST SEGMENT PUBLIC 'CONST'

Program constants may be put here. (optional)

CONST ENDS

DATA SEGMENT PUBLIC 'DATA'

EXT R N external variables
Define program data here.

DATA ENDS

STACK SEGMENT STACK 'STACK'

Use a OW statement here to add words to stack.

STACK ENDS

MEMORY SEGMENT MEMORY 'MEMORY'

This is a special data segment, above the other segments.

MEMORY ENDS

·COD£ SEGMENT PUBLIC 'CODE'

EXT R N external N EAR labels, such as procedure names
Put instruction statements here.

·CODE EHDS

END Optional start-address, for main module only.

For SMALL subsystems~ * = Subsystem Name (if subsystem is named) or Null String
(if subsystem is not named).

Notes on the SMALL . Model

• Total program code may be up to 64 bytes.

• Combined size of code, data, stack, and memory segments may be up to 64K
bytes.

• The segment registers do not change: CS holds the CGROUP base; DS and SS
both hold the DGROUP base.

• All procedures should be given type NEAR. (Note, however, that NEAR cannot
be used with subsystems or with public and external procedures.)

ASM86 Macro Assembler Linking Assembly Language and Higher Level Languages

• Offsets of variables are group-relative, so the group override operator (DGROUP:)
must be used with the OFFSET operator and when initializing a DW to a var­
iable's offset.

• All addresses are short pointers (offsets), except when -CONST IN CODE- is
used. Thus, the PL/M-86 POINTER data type and @ operator use a short (offset)
address, just like the WORD data type and dot (.) operator.

• Pascal-86 supports SMALL subsystems, PL/M-86 does not.

B-7

Linking AsselDbly Language and Higher Leyel Languages ASM86 Macro AsselDbler

B-8

The Compact Model of Segmentation

N A M E module-name

'CGROUP GROUP ·CODE
'DGROUP GROUP ·CONSTS, 'DATA

ASSUME CS:'CGROUP, DS:'DGROUP, SS:STACK

·CONST SEGMENT PUBLIC 'CONST'

Program constants may be put here.

'CONST ENDS

'DATA SEGMENT PUBLIC

EXT R N external variables
Define program data here.

'DATA ENDS

(Optional)

'DATA'

STACK SEGMENT STACK 'STACK'

Use a DW statement here to add words to stack.

STACK ENDS

MEMORY SEGMENT MEMORY 'MEMORY'

This is a special data segment, above the other segments.

MEMORY ENDS

'CODE SEGMENT PUBLIC 'CODE'

EXT R N external N EAR labels, such as procedure names
Put instruction statements here.

·CODE ENDS

END Optional start-address, for main module only.

For COMPACT subsystems, *=Subsystem Name (if subsystem is named) or Null
String (if subsystem is not named).

Notes on the COMPACT Model

• Total program code may be up to 64K bytes.

• Combined size of data and constant segments may be up to 64K bytes.

• The stack may be up to 64K bytes in size.

• Memory segments may be up to 64K bytes in size.

ASM86 Macro Assembler I.iDkiag Assembly Language and Higher Level Languages

• The segment registers do not change: CS holds the base of CGROUP; DS holds
the DGROUP base; and SS holds the base of the STACK segment. ES should
be used to access the MEMORY segment and for indirect references using long
pointers.

• All procedures should be given type NEAR. (Note that NEAR cannot be used
with subsystems or with public and external procedures.)

• Offsets of variables are group-relative, so the group override operator (DGROUP:)
must be used with the OFFSET operator and when initializing a DW to a varia­
ble's offset.

• The PL/M-86 POINTER data type and @ operator use a long address.

• Both Pascal-86 and PL/M-86 support COMPACT subsystems.

B-9

Linking Assembly Language and Higher Level Languages ASM86 Macro Assembler

B-IO

The Medium Model of Segmentation

N A M E module-name

DGROUP GROUP CONSTS, DATA, STACK, MEMORY

ASSUME CS:CGROUP, DS:DGROUP, SS--DGROUP

CONST SEGMENT PUBLIC 'CONST'

Program constants may be put here.

CONST ENDS

DATA SEGMENT PUBLIC

EXT R N external variables
Define program data here.

DATA ENDS

STACK SEGMENT STACK

'DATA'

'STACK'

Use a OW statement here to add words to stack.

STACK ENDS

MEMORY SEGMENT MEMORY 'MEMORY'

This is a special data segment, above the other segments.

MEMORY ENDS

EXT R N external FAR labels, such as procedure names

·CODE SEGMENT 'CODE'

Put instructions here.

·CODE ENDS

END Optional start-address, for main module only

Notes on the MEDIUM Model

• Program code may exceed 64K bytes.

• Combined size of data, constant, stack, and memory segments must be less than
64K bytes.

• The DS and SS segment registers hold the base of DGROUP and do not change.
ES should be used for indirect references using long pointers.

• Local procedures may have type NEAR, but all pubic and external procedures
must have type FAR.

ASM86 Macro Assembler Linking Assembly Language and Higher Level Languages

• Offsets of variables are group-relative, so the group override operator (DGROUP:)
must be used with the OFFSET operator and when initializing a DW to a varia­
ble's offset.

• The PL/M-86 POINTER data type and @ operator use a long address.

• Pascal-86 and Fortran-86 do not support this model. PL/M-86 does not support
MEDIUM subsystems.

B-ll

linking Assembly Language and Higher Level Languages ASM86 Macro Assembler

B-12

The Large Model of Segmentation

N A M E module-name

ASSUME CS:CODE, DS:DATA, SS:STACK

EXT R N external variables

DATA SEGMENT 'DATA'

Use a D III statement here to add words to stack.

STACK ENDS

MEMORY SEGMENT MEMORY 'MEMORY'

This is a special data segment,above the other segment.

MEMORY ENDS

EXT R N external FAR labels, such as procedure names

CODE SEGMENT , COD E '

Put instruction statements here.

CODE ENDS

·CODE ENDS

END Optional start-address, for main module only.

Notes on the LARGE Model

• Program code may exceed 64K bytes.

• Program data may exceed 64K bytes.

• Stack may be up to 64K bytes in size.

• Memory segment may be up to 64K bytes in size.

• The SS segment register holds the base of the STACK segment and does not
change.

FORTRAN-86 supports only this module, but does not support LARGE subsys­
tems. (PLfM-86 and Pascal-86 do support LARGE subsystems.)

• The OS segment register holds the base of the local data segment; thus, its value
is different for each module. The previous value of DS should always be saved
when OS is reloaded, and later restored.

• Local procedures may have type NEAR, but all public and external procedures
must have type FAR.

• All pointers passed between modules must be long (base:offset) addresses. The
PLfM-86 POINTER data type and @ operator use a long address.

External variables use a different base than local variables. Thus, you must load
OS or ES with the appropriate segment base before addressing an external
variable.

• Large subsystem maps directly to the LARGE model.

APPENDIX C
RULES FOR SHORTENING . CONTROLS

Any of the controls mentioned in this book have a legal short form. This appendix
contains rules that can be used to shorten most of the controls found in Intel languages.
Here are the rules:

• If the control is a one-syllable word, use the first two characters.

• If the control is a polysyllabic word, but not a compound word, use the first
character from the first two syllables.

• If the control is a compound word, use the first character from each of the
compounding words; however,

• If the control begins with NO, NO cannot be shortened.

C-I

APPENDIX D
USING THE 8087 NUMERIC DATA PROCESSOR

AND THE 8087 EMULATOR PROGRAMS

This appendix is directed to the programmer who has an ASM86 Macro Assembly
Language program that makes use of numeric instructions. The program must meet
both of the following requirements:

1. It must include a declaration of the EXTERNAL FAR procedure INIT87.

2. It must execute a call to INIT87 before any numeric instruction is executed.

Assemble the program as usual with ASM86. Next, perform one of these LINK86
commands:

RuN ~;NK86<::ro9rm.ODJ>,E8087,E8087.~IE[TO<pro9"~.1"k)]

or

RuN LINK85<::"ogrrr.obJ> ,8C87.L:B[TO<progrm.lnr.)]

If your program uses floating-point instructions, but your system does not include an
8087 Numeric Data Processor (NDP), then you must use the 8087 Emulator. The
first of the preceding LINK86 commands will connect your program to E8087.LIB.
LINK86 will alter your code so that the numeric instructions will access the Emulator,
E8087, rather than the 8087 NDP. The Emulator library provides the following
services:

• The library satisfies the call to INIT87, which initializes interrupts 20 - 31 for
the Emulator. (You must reserve interrupt 16 as well if your program includes
an exception handler to process numerical errors.) INIT87 contains a FINIT
instruction that initializes the Emulator when it is executed.

• The object code will be altered so that the escape opcodes used by the 8087 NDP
will be replaced by the interrupt opcodes used by the Emulator.

When disassembling your Emulator-linked program, you may notice the change from
escape instructions to interrupt instructions. This is because a call to the Emulator
interrupts execution of the calling program, while the S087 executes those instruc­
tions as your program runs. When using the 8087 NDP, your program does not always
have to wait for numeric results before it can continue. You may also notice that the
list files show 8087 escape opcodes, even though you are using the Emulator, because
the list files are written at assembly-time, while the code changes are made later, at
link-time.

If your program makes use of numeric instructions and your system incorporates an
8087 NDP, then you will link your programs to SOS7.LIB. This library contains a
call to INIT87 that performs a FIN IT instruction that initializes the 80S7 NDP.

You may link your program's segments within the same classnames as the Emulator's
segments. To do so, use the following classnames for your segments:

SEGMENT
CODE
DATA
STACK

CLASSNAME
AQMCODE
AQMDATA
STACK

There are some restrictions upon linking PL/M-S6 programs and ASM86 Macro
Assembly Language programs with the 8087 Emulator. A version of the 8087
Emulator is available that satisfies the numeric requirements of PL/M-86 programs.

0.1

Using 8087 Programs ASM86 Macro Assembler

D-2

It is referred to as the partial 8087 Emulator, PE8087. Since the partial Emulator is
a subset of the full Emulator, PL/M-86 numeric instructions can be satisfied by either
Emulator. Assembly language programs, on the other hand, require the full Emulator.
Since you may not link both versions of the Emulator into tht; same program, you
must use the full Emulator if you intend to link PL/M-86 and ASM86 Macro
Assembly Language programs.

8087 Emulator Programs, using, D-l
8087 Numeric Data Processor, using, D-l

ASM86, see also Assembler, ASM86 Macro Assembler
Assembler, ASM86 Macro Assembler

before using, 1-1
calling, B-1
controls, 3-1

shortened form, C-l
summary of, 3-3

defaults, 3-2
errors, A-I
invoking, 1-1
parameters, 2-5

assembly language, ASM86, 1-1

body, 4-1

CGROUP, B-3

DATE (DA), 3-3
DEBUG (DB), 3-3
DGROUP, B-3

EJECT (EJ), 3-4
EQUATE,4-6

(CMACRO) codemacro, 4-6
with external symbol, 4-6
with group, 4-6
with label, 4-6
with number, 4-6
with record field, 4-6
with register, 4-6
with segment, 4-6
with structure field, 4-6
with variable, 4-6

error messages and recovery, A-I
console error messages, A-I
control error messages, A-I
I/O error messa'ges, A-I
Macro error messages, A-2
other error messages, A-2
source file error messages, A-2

ERRORPRINT (EP), 3-4

FORTRAN-86, linking to ASM, B-1

GEN (GE), 3-4
GENONLY (GO), 3-4

higher level languages, linking ASM to, 8-1

INDEX

INCLUDE (IC), 3-6
nesting indicator (+), 4-7

iRMX86 Operating System, 2-3

LINE,4-7
LIST (LI), 3-6
LOC field, list file, 4-4

with STRUCTURE, 4-4

MACRO (MR), 3-7
Dlempercent, 3-7
MOD186 (Ml), 3-7
Dlodels of segmentation, B-3

COMPACT, B-8
LARGE, B-12
MEDIUM, B-I0
SMALL,B-6

OBJECT (OJ), 3-8
operating systems

invoking the various, 2-1

PAGELENGTH (PL), 3-8
PAGEWIDTH (PW), 3-8
PAGING (PI), 3-9
parameters

accessing, B-2
passing, B-1
retrieving from stack, B-1

Pascal-86, linking to ASM, B-1
PL/M-86, linking to ASM, B-1
PRINT (PR), 3-9
procedural interface, for linking higher level languages

to ASM, B-1

register conventions, B-3
values returned to, B-2

RESTORE (RS), 3-9

SAVE (SA), 3-9
Series III Development System, Standalone, 2-1
Series III Development System, Workstation, 2-2
source text, 4-7
SYMBOLS (SB), 3-10

templates
for linking ASM to higher level languages, B-4

TYPE (TY), 3-11

WORKFILES (WF), 3-11

XREF (XR), 3-12

Index-l

ASMS6 Macro Assembler Operating Instructions for SOS6-Based Systems
12162S-003

REQUEST FOR READER'S COMMENTS

Intel's Technical Publications Departments attempt to provide publications that meet the needs of all Intel product
users. This form lets you participate directly in the publication process. Your comments will help us correct and
improve our publications. Please take a few minutes to respond.

Please restrict your comments to the usability, accuracy, readability, organization, and completeness of this
publication. If you have any comments on the product that this publication describes, please contact your Intel
representative. If you wish to order publications, contact the Intel Literature Department (see page ii of this
manual).

1. Please describe any errors you found in this publication (include page number).

2. Does the publication cover the information you expected or required? Please make suggestions for
improvement.

3. Is this the right type of publication for your needs? Is it at the right level? What other types of publications
are needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this publication on a scale of 1 to 5 (5 being the best rating). ___________ _

NAME ___ __ DATE ____________ _
TITLE __ _

COMPANY NAME/DEPARTMENT __ __
ADDRESS ___ __

CITY __________________________ _ STATE ______________ , ZIP CODE ________ _

(COUNTRY)

Please check here if you require a written reply. 0

WE'D LIKE YOUR COMMENTS .•.

This document is one of a series describing Intel products. Your comments on the back of this form will
help us produce better manuals. Each reply will be carefully reviewed by the responsible person. All
comments and suggestions become the property of Intel Corporation.

BUSIN ESS REPLY MAIL
FIRST CLASS PERMIT NO. 1040 SANTA CLARA, CA

POSTAGE WILL BE PAID BY ADDRESSEE

Intel Corporation
Attn: Technical Publications MIS 6-2000
3065 Bowers Avenue
Santa Clara, CA 95051

I II I I NO POSTAGE

NECESSARY
IFMAILED

IN U.S.A.

inter
INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, California 95051 (408) 987-8080

Printed in U.S.A.

