

CHAPTERS
PROGRAM OVERLAYS

AND LINKED LOADING

Overview
When a program is larger than the available memory, it is necessary to link the
modules which make it up without combining them in one file. During execution,
when one part of the program is finished, and another needed, the second can be
loaded into the area of memory which had held the first. The same area of memory
can hold different sections of the program at different times. This multiple use of
the same memory area is called a program overlay.

Under ISIS-II, modules to be loaded separately must be in different files. The first
module is loaded by giving the name of the file which contains it as a command. The
subsequent loads of the overlays must be performed by your program using the
LOAD system call.

In the typical use of LINK and LOCATE, modules with external references are com­
bined with modules with matching public symbols to produce a module with no
unresolved external references. In linking without combining, the external
references must still be satisfied, but the program containing the public symbols
must not be included. The LINK "PUBLICS" control links the public symbols
from the input modules listed in the PUBLICS control to matching external
references. The word PUBLICS tells LINK that the modules themselves are not to
be combined into the output module, just the public symbols.
For example:

LINK A, PUBLICS(B,C) TO A.LNK
results in a module A.LNK, whose external references to the absolute modules Band
C are satisfied. Band C must be absolute modules for LINK to know the addresses
of the public symbols they contain (-obviously, since relocatable modules by
definition do not contain absolute addresses). The typical usage of LINK before
LOCATE is reversed. You must LOCATE Band C to create absolute modules
(which may contain unresolved external references--it really doesn't matter) before
you LINK them to A.

Consider the following example. A "root" segment (the segment loaded first) calls
segment "A." Segment "A," in turn, calls another segment, "AA." Next, segment
"AAA" overlays segment "AA." Finally, the root segment calls segment �~�'�B�,�"�

which overlays "A," but does not disturb "AAA," which it uses. The illustration
below depicts this overlay scheme. The "cards" are program segments. The
segments which overlap are overlays. Segments beside one another occupy different
areas of memory.

Figure 5-1. Overlays 121617-3

5-1

Program Overlays and Linked Loading MCS-80/85 Utilities

5-2

All of these segments must be in different files because they are loaded separately.
The root loads "A" and "B," and "A" loads "AA" and "AAA."

If you locate the root first, you can use the memory map produced by LoeA TE to
determine the base address of "A" and "B." The maps produced by locating "A"
and "B" can be used to determine the base address of "AA" and "AAA." You
must locate "AA" above the top of "A," and "AAA" above the top of "A" or
"B," depending upon which is higher.

Suppose the modules make the following references to one another:

The ROOT has external references to A and B.
A has external references to AA, AAA, and the ROOT module.
B contains external references to AAA and the ROOT.
AA has external references to A.
AAA contains external references to A and B.

The absolute modules produced by LOeA TE are as yet unsatisfied, and have been
given the .TMP extension. The following LINK commands, performed upon these
absolute modules, will produce a working program.

The modules are now fully connected but not combined, and are ready to run. You
may wish to LOeA TE all of the modules again just to make certain that all of the
external references have been satisfied.

NOTE

When you link without combining to produce overlays, you must provide
overlay management in your program. Before a segment makes use of
another, both must be in memory. In the above example, ROOT must load
A and B, and A must load AA and AAA. B does not load anything, A has
already loaded AAA, and the root is loaded from the start. You must also
make sure that you allocate memory properly-if segment B is longer than
A, and AAA begins immediately above A, then AAA will be destroyed by
loading B. If AA contains data which will be needed after it is overwritten,
you must provide the means to save the data when AAA is loaded. Linking
without combining provides the hooks for overlaying, but the runtime
management must be designed into your software.

· ~ CHAPTER 6
CODE CONVERSION PROGRAMS n

I ntrod uction

The two ISIS-II code converters exist to provide compatibility with systems employ­
ing a hexadecimal object code format by converting programs between the ISIS-II
format and the hexadecimal format, and vice-versa.

The 'Code conversion programs change the character coding, but not the content of
the files they process. Instructions and addresses will be the same, but expressed in a
different format.

SYNTAX:

DEFINITION:

EXAMPLE:

HEXOBJ

H EXO BJ hexfile TO absfile [ST ART (address)]

where hexfile contains hexadecomal MCS-80/85 code, absfile
is the output file to contain the ISIS-II compatible absolute
object module, and address is the desired start address of the
output module.

HEXOBJ converts hexadecimal-encoded MCS-80/85 code into
ISIS-II compatible form. the output module receives the name
portion of absfile. HEXOBJ produces a symbol table only if
symbols were defined in the hexfile.

With the optional START(address) control, you may specify
the start address of the object module. This address may be
given in any of the bases described on page -.- of chapter -.
If START(address) is omitted, then HEXOBJ will search the
end-of-file record of hexfile for that information. The address
stored there is determined by an assembly-language statement, a
numeric lable on the first statement of a PL/M program, or a
compiler control. If none of these have been used, then there will
be no start address in hexfile, and HEXOBJ will set the start
address of absfile to O. You cannot load and run such a pro­
gram under ISIS-II, since all memory below 3000H is reserved.

HEXOBJ :F1 :PRIMO.HEX TO ABS.OBJ START(3300H)

6-1

Code Conversion Programs

SYNTAX:

DEFINITION:

EXAMPLE:

6-2

MCS-80/85 Utilities

OBJHEX

OBJHEX absfile TO hexfile

where absfile contained an ISIS-II absolute object module, and
hexfile will contain hexadecimal-format object code.

OBJHEX is the converse of HEXOBJ-it produces hexadecimal
object code from and ISIS-II formatter file. The starting address
is obtained from absfile, and the hexadecimal code does not
contain a symbol table. You may wish to convert files to hexa­
decimal format for loadng into PROM, or so that the program
may run on a system which uses hexadecimal coding.

OBJHEX SOURCE.ABS TO :F2:SINK.HEX

APPENDIX A
HEXADECIMAL PAPER TAPE FORMAT

Object code is stored on paper tape in an ASCII representation of the program in
memory. The code is blocked into records, each of which contains the record type,
length, type, memory load address, and checksum in addition to the data. Figure
A-I shows the frames of a tape record.

H CHECKSUM n DAT
>

,.... I"

""'"--'"

RECORD TYPE

LOAD
ADDRESS

RECORD
LENGTH

RECORD MARK

Figure A-I. Paper Tape Record Format

The Record Mark is a colon (3AH) and is used to signal the start of a record.

121617-4

The Record Length is the count of the data bytes in the record. A record length of
zero indicates end-of-file.

The Load Address specifies the address at which the first data byte will be loaded.
The successive data bytes will be stored in successive memory locations.

The Record Type specifies the type of this record. All data records are type o. End­
of-file records can be type 0 or 1.

The Data consists of two frames per memory word. The data is represented by hex­
adecimal values OOH through FFH.

The Checksum is the negative of the sum of all 8-bit bytes in the record, beginning
with the Record Length and ending with the last Data byte, evaluated modulo 256.
The sum of all bytes in the record (including the checksum) should be zero.

A-I

· ' APPENDIX B
HEXADECIMAL-DECIMAL CONVERSION n

The following table is for hexadecimal to decimal and decimal to hexadecimal con­
version. To find the decimal equivalent of a hexadecimal number, locate the hex­
adecimal number in the correct position and note the decimal equivalent. Add the
decimal numbers.

To find the hexadecimal equivalent of a decimal number, locate the next lower
decimal number in the table and note the hexadecimal number and its position. Sub­
tract the decimal number from the table from the starting number. Find the dif­
ference in the table. Continue this process until there is no difference.

BYTE BYTE
HEX DEC HEX DEC HEX DEC HEX DEC

0 0 0 0 0 0 0 0
1 4,096 1 256 1 16 1 1

2 8,192 2 512 2 32 2 2

3 12,288 3 768 3 48 3 3

4 16,384 4 1,024 4 64 4 4

5 20,480 5 1,280 5 80 5 5
6 24,576 6 1,536 6 96 6 6

7 28,672 7 1,792 7 112 7 7

8 32,768 8 2,048 8 128 8 8

9 36,864 9 2,304 9 144 9 9
A 40,960 A 2,560 A 160 A 10

B 45,056 8 2,816 B 176 8 11

C 49,152 C 3,072 C 192 C 12

D 53,248 0 3,328 D 208 0 13

E 57,344 E 3,548 E 224 E 14

F 61,440 F 3,840 F 240 F 15

B-1

Decimal Octal Hexadecimal

0 000 00
1 001 01
2 002 02
3 003 03
4 004 04
5 005 05
6 006 06
7 007 07
8 010 08
9 011 09

10 012 OA
11 013 OB
12 014 OC
13 015 OD
14 016 OE
15 017 OF
16 020 10
17 021 11
18 022 12
19 023 13
20 024 14
21 025 15
22 026 16
23 027 17
24 030 18
25 031 19
26 032 1A
27 033 1B
28 034 1C
29 035 1D
30 036 1E
31 037 1F
32 040 20
33 041 21
34 042 22
35 043 23
36 044 24
37 045 25
38 046 26
39 047 27
40 050 28
41 051 29
42 052 2A
43 053 2B
44 054 2C
45 055 20
46 056 2E
47 057 2F
48 060 30
49 061 31
50 062 32
51 063 33
52 064 34
53 065 35
54 066 36
55 067 37
56 070 38
57 071 39
58 072 3A
59 073 3B
60 074 3C
61 075 3D
62 076 3E
63 on 3F

Table C-l. ASCII Code List

Character Decimal

NUL 64
SOH 65
STX 66
ETX 67
EOT 68
ENO 69
ACK 70
BEL 71
as 72
HT 73
LF 74
VT 75
FF 76
CR 77
SO 78
SI 79

DLE 80
DC1 81
DC2 82
DC3 83
DC4 84
NAK 85
SYN 86
ETB 87
CAN 88
EM 89

SUB 90
ESC 91
FS 92
GS 93
RS 94
US 95
SP 96

! 97
" 98
II 99
$ 100
% 101
& 102 , 103
(104
) 105
* 106
+ 107

108
- 109

110
I 111
0 112
1 113
2 114
3 115
4 116
5 117
6 118
7 119
8 120
9 121

122
J 123
< 124
= 125
> 126
? 127

Octal

100
101
102
103
104
105
106
107
110
111
112
113
114
115
116
117
120
121
122
123
124
125
126
127
130
131
132
133
134
135
136
137
140
141
142
143
144
145
146
147
150
151
152
153
154
155
156
157
160
161
162
163
164
165
166
167
170
171
172
173
174
175
176
177

APPENDIX CI
ASCII CODES

Hexadecimal Character

40 @
41 A
42 B
43 C
44 D
45 E
46 F
47 G
48 H
49 I
4A J
4B K
4C L
4D M
4E N
4F 0
50 P
51 0
52 R
53 S
54 T
55 U
56 V
57 W
58 X
59 Y
5A Z
5B [
5C
5D]
5E A
5F -
60 ,
61 a
62 b
63 c
64 d
65 e
66 f
67 9
68 h
69 i
6A j
6B k
6C I
60 m
6E n
6F 0
70 P
71 q
72 r
73 5
74 t
75 u
76 v
n w
78 x
79 Y
7A z
7B I 7C
70
7E
7F DEL

C-l

· "- APPENDIX D
ISIS-II ERROR MESSAGES n

Introduction

This appendix lists the error messages issued by ISIS-II. These errors can occur at
the invocation of any of the ISIS-II routines, or can be generated by error conditions
encountered in the operation of those routines.

The error numbers are divided into three groups as follows:

• Errors 1-99 are those which occur within ISIS-II resident routines.

• Errors 100-199 are reserved for user-written program errors.

• Errors 200-255 are generated by ISIS-II non-resident routines.

ISIS-II errors can be either fatal or non-fatal. Fatal errors halt program execution
immediately, and do not permit recovery. Fatal errors result in the return of control
to ISIS-II, which overwrites some of the user program area. ISIS-II displays this
error message:

ERROR nnn USER PC mmmm

Where nnn is the error number, and mmmm is the address in the program counter
when the error occurred.

Non-fatal errors halt the execution of the current program, but do not return control
to ISIS-II. User-written error handling routines can restore the program to the pre­
error condition. If the error occurs in a program invocation, the errant input is
echoed, and an appropriate error message is given, as below:

COP Y : G 1 : eRE 0 ITT 0 : F 0 : C ROT <cr
:G1:CREDIT, UNRECOGNIZED DEVICE NAME

The non-fatal errors encountered by some ISIS-II non-resident routines have
appropriate error messages-these are included in the error descriptions.

In the list below, fatal errors are identified by an asterisk before the error
description.

ISIS-II Error Descriptions

o No error detected. This is the normal state.

*1 Too few buffers have been allocated than are required to meet the current
program needs. Trying to allocate more than the maximum of 19 buffers will
cause this error as well.

2 ILLEGAL AFTN ARGUMENT

The value specified as an AFTN (Active File Table Number) is either not in the
table of open files or is otherwise incorrect. Such an error will occur when your
program tries to read a file which has been closed. To recover from this error,
replace the AFTN with a correct value.

*3 Attempt to open more than six files simultaneously. The AFT can contain, at
most, six files. To recover from this error, close one file, thereby freeing an AFT
position.

0-1

ISIS-II Error Messages MCS-80/85 Utilities

0-2

4 INCORRECTLY SPECIFIED FILENAME

You have entered a filename which is illegal for one of these reasons:

• It contains more than six letters, or has an extension of more than three
letters.

• It contains illegal characters. Filenames may contain only the characters
A - Z and the numerals 0 - 9.

• The first character of the file name is a numeral. Filenames must begin with
a letter.

5 UNRECOGNIZED DEVICE NAME

The device name specified is not a legal device. Check the ISIS-II User's Guide
for a full list of legal devices.

6 A TTEM PT TO WRITE TO AN IN PUT DEVICE

It is impossible to write to an input device such as a file open for input or any of
the terminal input files. :CI:, :VI:, and :TI: are all input devices.

*7 Insufficient disk space. The disk is full. Before writing to a disk, make sure that
it has sufficient room.

8 ATTEMPT TO READ FROM AN OUTPUT DEVICE

Some devices, like the line printer (:LP:), are output-only devices. You cannot
read from them. :CO:, :VO:, and :TO: are output-only, and cannot be read.

9 DISK DIRECTORY FULL

There is no room in the disk directory for any new files. There is a limit of 200
files for floppy disks, and 992 for hard disks.

10 NOTONSAMEDISK

The second file specified is not on the same disk as the first, but it is expected to
be. An attempt to rename a file to another disk will produce this error.

11 FILE ALREADY EXISTS

The specified filename matches one already on the disks. Many ISIS-II routines
which produce this error allow you to decide whether to replace the old file with
the specified one, or to change the name of the new file.

12 FILE IS ALREADY OPEN

Only the console input and output (:CI: and :CO:) may be opened more than
once without being closed. Other files can only be opened once. Check your
program for these possible causes: .

• The program makes an unintended jump to the OPEN statement.

• The filename is misspelled in the second OPEN statement.

• You have coded more than one OPEN statement for the file.

13 NO SUCH FILE

The file specified is not in the directory of the disk specified. Probable causes
are an incorrect filename or device designator.

MCS-80/8S Utilities ISIS-II Error Messages

14 WRITE PROTECTED

The intended WRITE, RENAME, or DELETE operation could not be per­
formed because the file is write protected (attribute W). This error also occurs
when one of these operations is attempted on a disk whose write-protect slot is
open.

*15 Attempted load into ISIS-II reserved area. The system will not allow you to load
programs below 3000H because that area is reserved for ISIS-II resident pro­
grams. Such a load operation would not permit the use of system calls, and
would make return of control to ISIS-II impossible.

*16 Illegal load format. The file to be loaded is not an ISIS-II absolute-format file.
To be loaded and executed by the ISIS-II system, code must be in the proper
absolute format.

17 NOT A DISK FILE

An attempted reference to a disk file has been made using a non-disk device
identifier. An example would be :HP:THIS in place of :FI :THIS. This error
differs from number 5 in that the device name given here is a legal device name,
but not the correct one.

*18 This error reports that an ISIS system call was made from a program with an
illegal command number.

19 ATTEMPTED SEEK ON NON-DISK FILE

Seeks on devices other than disk drives are invalid, with the exception of :BB:.
Check for possible errors in AFTNs or misspellings.

20 ATTEMPTED BACK SEEK TOO FAR

The seek went beyond the beginning of a file. MARKER is set to zero. See the
ISIS- II User's Guide.

21 CAN'T RESCAN

Files which are not open for line-editing cannot be rescanned.

22 ILLEGAL ACCESS MODE TO OPEN

There are only three legal access mode parameters for OPEN:

1 Input (Read-only)
2 Output (Write-only)
3 Update (Read-Write)

Error 22 can also indicate that the access mode selected is not legal for this file.

23 MISSING FILENAME

A filename is expected as an argument to a command, and is not present.
DELETE <cr> (no file designated for deletion) is a case for which this error
would occur.

0-3

ISIS-II Error Messages MCS-80/85 Utilities

D-4

*24 Disk 110 error. An additional message follows the usual error number line

ST A TUS=OOnn
D=x T=yyy S=zzz

where x is the drive number
yyy is the track address
zzz is the sector address
nn indicates the following:

For Floppy disks:

01 Deleted record
02 Data field CRC error
03 Invalid address mark
04 Seek error
08 Address error
OA ID field CRC error
OE No address mark
OF Incorrect address mark
10 Data overrun or underrun
20 Attempt to write on write protected disk
40 Drive has indicated a write error
80 Drive not ready

For Hard disks:

01 ID field miscompare
02 Data field CRC error
04 Seek error
08 Bad sector address
OA ID field CRC error
OB Protocol violation
OC Bad track address
OE No ID address mark or sector not found
10 Format error
20 Attempt to write on write protected drive
40 Drive indicates write error
80 Drive not ready

Error 24 may indicate permanent damage to the disk. If so, then you may wish
to copy the salvagable files to a new disk with the COpy command.

25 Echo files, like all other 110 files, must have an AFTN which is between 0 and
255. Echo files must be open for output. Check that both of these requirements
are met.

26 ILLEGAL ATTRIBUTE IDENTIFIER

The second parameter to the A TTRIB system call (not to be confused with the
A TTRIB program) must be

o Invisible file
1 System file
2 Write-protected file
3 Format attribute file

MCS-80/85 Utilities ISIS-II Error Messages

27 ILLEGAL SEEK COMMAND

The MODE for the SEEK system call must be one of these values:

o Return marker location
1 Move marker backward
2 Move marker to specific location
3 Move marker forward
4 Move marker to end of file

Error 27 can also indicate that the mode selected is not possible for the specified
file.

28 MISSING EXTENSION

A filename extension is expected but not entered. Check for mistyped filename.

*29 Premature EOF. An unexpected end-of-file has been encountered from the
console or an input file. Check for possible misspellings or other errors which
might cause the incorrect input file to be read.

*30 Drive not ready. The disk drive specified is not ready. Check the drive to make
certain that the disk is inserted correctly, and the door is completely closed and
latched.

31 CAN'T SEEK ON WRITE ONLY FILE

Seeks can only be performed on files open for update or read. This non-fatal
error can be processed by selecting the correct file or by closing and re-opening
the specified file in one of these modes.

32 CAN'T DELETE OPEN FILE

You must close a file before attempting to delete. Check to be certain that the
filename is correct.

*33 Illegal system call parameter. Check all parameters of the call at the location
specified in the PC portion of the error message.

*34 Illegal return switch in LOAD system call. The only legal values are

o Control is returned to the calling program. The debug toggle is
unchanged.
Control is returned to the loaded program, and the debug toggle
is reset.

2 Control is returned to the Monitor. To restart program, use the
Monitor "G" command.

35 SEEK PAST EOF

The file is opened for input, and a SEEK has been attempted beyond the end-of­
file. You may SEEK beyond the end of a file open for update.

Error Messages for Nonresident System Routines
201 UNRECOGNIZED SWITCH

A character not known as a switch for this routine was entered. The Escape
character, for example, is not allowed in invocation lines, so COpy A TO
B<esc> is illegal.

D-5

ISIS-II Error Messages MCS-80/8S Utilities

0-6

202 UNRECOGNIZED DELIMITER

A character which is not allowed in a name and is not recognized as a valid
delimiter has been entered.

203 INVALID SYNTAX

A parameter in a system call was inappropriate in the context used. Such a case
is COpy A FOR B, where FOR is inappropriate in the COpy command.

204 Premature end-of-file. See error 29.

206 ILLEGAL DISK LABEL

The label entered in the IDISK or FORMAT command is either too long or
violates the legal character rules for disk labels. These rules are the same as for
files.

207 No END statement found in input. The input file being read lacks the expected
END record. Check for misspelled input file name. Other causes can be a prob­
lem in translating or linking the file.

208 CHECKSUM ERROR

The bits of the records read do not add up properly. Either an I/O error has
occurred or the input source is damaged. Check for damage to the disk, paper
tape, or other input medium.

209 RELO FILE SEQUENCE ERROR

Either an I/O error has occurred, or an incorrect input file has been specified.

210 INSUFFICIENT MEMORY

The required or requested amount of RAM is not available. Either too much
RAM was requested, or some hardware problem has arisen.

~1 RECORDTOOLONG

A record longer than expected has been encountered. Make sure the input file is
correct.

212 ILLEGAL RELO TYPE

Relocation types must be one of these:

A Absolute, non-relocatable
B Byte-relocatable
P Page-relocatable
I In-page relocatable

See Chapter 2 for an explanation of relocation types.

213 FIXUP BOUNDS ERROR

The address required violates numeric bounds on addresses. See Chapter 1 for
an explanation of Intellec memory configuration.

MCS-80/85 Utilities ISIS-II Error Messages

214 ILLEGAL SUBMIT PARAMETER

One of the actual parameters to be substituted for a formal parameter within a
submit file is in error. See the ISIS-II User's Guide.

215 ARGUMENT TOO LONG

The number of characters in an actual argument may not exceed 31.

216 TOO MANY PARAMETERS

More parameters supplied than defined, or the limit of 10 parameters has been
exceeded.

217 OBJECT RECORD TOO SHORT

One of the records in an object module file has fewer bytes than were expected.
This error can be caused by an 110 error or by an incorrect file specification.

218 ILLEGAL RECORD FORMAT

The record format must conform to Intel standard. Check for a misspelled
filename or damage to the disk or input medium.

219 PHASE ERROR

The expected phase input (for the next step of a translation process) is incor­
rectly specified.

220 No end-of-file record in object module file. An end-of-file record must be
contained in every object file according to the standard object file format.

221 Segment overflow during LINK. Because of the size of the Intellec memory
area, no segment may exceed 64K bytes in length. This error indicates that some
segment has exceeded this limit.

222 Unrecognized record in object module file. Here, again, the object module file
does not match the standard object module format.

223 Fixup record pointer is incorrect. The fix up record allows LINK to adjust the
addresses of inter- or intra-segment references, and external references. If the
pointer is incorrect, then LINK cannot correctly adjust the addresses.

224 Illegal record sequence in LINK object module file. The records within one of
the LINK object module files are out of order. This could indicate an I/O error,
damaged disk, or an incorrect file specification.

225 Illegal module name specified. Module names must conform to the standard
format explained on page -.-.

226 Module name exceeds 31 characters. There is a 31 character limit on the length
of filenames.

227 Command syntax requires left parenthesis. Self explanatory.

228 Command syntax requires right parenthesis. Self explanatory.

229 Unrecognized control specified. One of the controls to a command is probably
misspelled, or is not a legal control for this command. Example: LINK A.OBJ,
B.LIB TO AB.OBJ START(3000H). The START control is a LOCATE con­
trol, not a LINK control.

D-7

ISIS-II Error Messages MCS-80/85 Utilities

0-8

230 Duplicate symbol found. If LINK encounters a symbol which is used in more
than one module, this message is issued. If it indicates an error, then you must
change the source code of one of the modules so that the symbols differ.

231 File already exists. See error 11.

232 Unrecognized command. The command specified does not exist. Check for
misspellings. Check the ISIS-II User's Guide for a list of legal commands.

233 Command syntax requires a "TO" clause. Some commands, such as COPY,
require a TO <filename> clause.

234 CANNOT FORMAT FROM TARGET DRIVE

The source disk for formatting another disk must be in a different drive from
the target drive, except when the single drive mode is selected with the IDISK
command.

235 NON-DISK DEVICE

You have specified a non-disk device, such as :LP:, when the system expects a
disk device. You cannot use IDISK on the line printer, for example.

236 More than 249 common segments in input files. No more than this number can
be processed. This limit should not impose restrictions under normal
circumstances.

237 Specified common segment not in object file. You have specified a non-existent
common segment in the "/common namel" control to LOCATE.

238 Illegal stack content record in object file. The stack content record in the object
file does not conform to the expected format. This usually indicates an 110
error.

239 No module header record in input object file. Again, an error in the format to
the input object module file, possibly due to an I/O error. Check also for a
damaged disk.

240 Program exceeds 64K bytes. Obviously, this will not fit into the Intellec
memory. You may wish to subdivide the program and use overlays so that the
memory needed at anyone time is less than 64K bytes. Chapter 4 explains the
use of program overlays.

· ' APPENDIX E I
LINK ERROR MESSAGES n

Introduction

Errors encountered by LINK cause an unnumbered message to be sent to the current
console device and, in the case of non-fatal errors, to the LINK map. Fatal error
messages are sent only to the console device because processing is halted. Non-fatal
errors do not halt LINK processing.

Fatal Errors

Command Errors
Errors caused by improper command entry are followed by a partial copy of the
errant command followed by a number sign (#) in the vicinity of the error.

ERROR MESSAGE
partial copy of command#

The following messages identify improper command errors.

INVALID SYNTAX

This message occurs when some part of the command is not recognized. The prob­
lem can be a mistyped keyword, a missing comma, or an non-blank character
following a line-continuation ampersand.

DUPLICATE FILE NAME

The same file is specified as the input and output file.

'TO' EXPECTED

The command syntax requires a 'TO' clause for the output file. This message
indicates that the clause has been omitted.

LEFT PARENTHESIS EXPECTED

A PUBLICS, NAME, or PRINT keyword is not followed by a "(".

RIGHT PARENTHESIS EXPECTED

The list following one of the three keywords listed above is not terminated with a
")".

INVALID NAME

The module name contains an illegal character, or begins with a numeral. See
Chapter 2 for the rules concerning module names.

NAME TOO LONG

Module names may not be longer than 31 characters.

UNRECOGNIZED CONTROL

E-l

Link Error Messages MCS-80/85 Utilities

E-2

A character string other than NAME, MAP, or PRINT has been encountered.

Input File Errors

If there is an error in the internal format of a specified input file, one of the follow­
ing messages will be generated. These errors can be the result of something as simple
as a misspelling of a filename, or the error may be the result of problems generated
by a language translator or a previous LINK. If the filenames all appear to be cor­
rect, then compile the program and try to LINK it again. If the problem persists, and
the fault seems to be either LINK or the translator, report it to Intel with a Software
Problem Report.

filename, PREMATURE EOF (see ISIS-II error 29)
filename, CHECKSUM ERROR (see ISIS-II error 204)
filename, RECORD TOO LONG (see ISIS-II error 211)
filename, ILLEGAL RELO RECORD (see ISIS-II error 212)
filename, FIXUP BOUNDS ERROR (see ISIS-II error 213)
filename, ILLEGAL RECORD FORMAT (see ISIS-II error 218)
filename, NO EOF

This error indicates that the file being read in has no end-of-file
record. LINK cannot process such a file.

filename, BAD RECORD SEQUENCE
The records in the object module file specified are out of order.
LINK cannot process a file unless the records are in the proper order.

filename, ILLEGAL STACK CONTENT RECORD (see ISIS-II error 238)
filename, NO MODULE HEADER RECORD

The file named lacks the module header record which contains
information needed by LINK to process the file.

filename, NOT A LIBRARY
You have specified a list of library modules following a file which is
not a library.

filename, SEGMENT TOO LARGE (see ISIS-II error 221)
filename, INSUFFICIENT MEMORY

LINK cannot create the output file specified because there is not
enough room in memory for the LINK work space, which consists
mainly of the symbol table.

Non-Fatal Error Messages

Non-fatal errors issued by LINK are written to the map file and to the current con­
sole device (if different).

MORE THAN 1 MAIN MODULE, CONFLICT IN modname

This indicates that LINK found more than one main module in the input list. The
module named in the message is the second main module found. All of the main
modules are included in the output module, but the starting address of the output
module is taken from the first main module detected.

name-MULTIPLY DEFINED, DUPLICATE IN modname

The public name given here was defined in more than one module. The second
definition was detected in the module specified.

MODULE NOT IN LIBRARY, LOOKING FOR filename(modname)

The module named has not been found in the library given in the error message.

/name/-UNEQUALCOMMON LENGTH, CONFLICT IN modname

Two named common segments with the same name but different lengths were
found. The module containing the second segment found is given in the message.

APPENDIX F I
LOCATE ERROR MESSAGES

Introduction

Errors encountered by LOCATE cause an unnumbered message to be sent to the
current console device and, in the case of non-fatal errors, to the memory map.
Fatal error messages are sent only to the console device because processing is halted.
Non- fatal errors do not halt LOCATE processing.

Fatal Errors

Command Errors

Errors caused by improper command entry are followed by a partial copy of the
errant command followed by a number sign (II) in the vicinity of the error.

ERROR MESSAGE
partial copy of command'

The following messages identify improper command errors.

INVALID SYNTAX

This message occurs when some part of the command is not recognized. The prob­
lem can be a mistyped keyword, a missing comma, or an non-blank character
following a line-continuation ampersand.

'TO' EXPECTED

The command syntax requires a 'TO' clause for the output file. This message
indicates that the clause has been omitted.

LEFT PARENTHESIS EXPECTED

A COLUMNS, ORDER, START, STACKSIZE, CODE, DATA, STACK,
MEMORY, Icommon namel, II, NAME. or PRINT keyword is not followed by a
"(".

RIGHT PARENTHESIS EXPECTED

The list following one of the twelve keywords listed above is not terminated with a
")" .

INVALID NAME

The module name or I common namel contains an illegal character. See Chapter 2
for the rules concerning module names.

NAME TOO LONG

Module names and Icommon namels have a length limit of 31 charact~rs.

common name, COMMON NOT FOUND

F-I

Locate Error Messages MCS-80/85 Utilities

F-2

The input module does not contain the common segment specified in the command.

UNRECOGN~EDCONTROL

A character string other than NAME, MAP, PRINT, COLUMNS, SYMBOLS,
LINES, PUBLICS, PURGE, ORDER, CODE, DATA, STACK, STACKSIZE,
MEMORY, /common namel, II, RESTARTO, START, or STACKSIZE has been
encountered.

Input File Errors

If there is an error in the internal format of a specified input file, one of the follow­
ing messages will be generated. These errors can be the result of something as simple
as a misspelling of a filename, or the error may be the result of problems generated
by a language translator or during LINK. If so, then translate the source code again,
and re-LOCATE the object module. If the problem persists, and seems to be the
fault of LINK or the translator, report it to Intel with a Software Problem Report.

filename, PREMATURE EOF (see ISIS-II error 29)
filename, CHECKSUM ERROR (see ISIS-II error 204)
filename, RECORD TOO LONG (see ISIS-II error 211)
filename, ILLEGAL RELO RECORD (see ISIS-II error 212)
filename, FIXUP BOUNDS ERROR (see ISIS-II error 213)
filename, ILLEGAL RECORD FORMAT (see ISIS-II error 218)
filename, NO EOF

This error indicates that the file being read in has no end-of-file
record. LOCATE cannot process such a file.

filename, BAD RECORD SEQUENCE
The records in the object module file specified are out of order.
LOCA TE cannot process a file unless the records are in the proper
order.

filename, ILLEGAL STACK CONTENT RECORD (see ISIS-II error 238)
filename, NO MODULE HEADER RECORD

The file named lacks the module header record which contains
information needed by LOCATE to processs file.

filename, PROGRAM EXCEEDS 64K (see ISIS-II error 221)
filename, INSUFFICIENT MEMORY

LOCATE cannot process the input file specified because there is not
enough room in memory for work space.

Non-Fatal Error Messages

Non-fatal errors issued by LOCATE are written to the map file and to the current
console device (if different).

IN-PAGE SEGMENT> 256 BYTES COERCED TO PAGE BOUNDARY

An in-page relocatable segment has been discovered which is longer than the limit of
256 bytes for such segments. See Chapter 2 for a description of relocation types.

UNSATISFIED EXTERNAL(n) external name

This error occurs when an unsatisfied external name is encountered in the input file.
The number (n) is the count of the number of unsatisfied names uncovered so far. It
is used to identify the unsatisfied name in the following message.

REFERENCE TO UNSATISFIED EXTERNAL(n) AT xxxxH

MCS-80/85 Utilities Locate Error Messages

This message reports the address of the reference to the unsatisfied external name
identified by (n).

(MEMORY OVERLAP FROM xxxxH THROUGH yyyyH

This message is issued if the same memory location is defined in more than one pro­
gram segment.

F-3

APPENDIX G I
LIB ERROR MESSAGES

Introduction

All LIB error messages are nonfatal because LIB is an interactive program. The
command which caused the error will be aborted, but LIB will not be interrupted.

Command Errors

Errors caused by improper command entry are followed by a partial copy of the
incorrect command with a number sign (#) in the vicinity of the error.

ERROR MESSAGE
partial command#

The following are the LIB command error messages:

INSUFFICIENT MEMORY

LIB cannot execute the command given because it requires more memory than in
available in the intellec system.

INVALID MODULE NAME

A module listed in the command is incorrectly specified. Module names must con­
form to the format given in chapter 2.

INVALID SYNTAX

Check the command for one of the following:

• Misspelled keywords.

• Ampersand followed by a non-blank character.

• ADD: TO filename not followed by a <cr>.

• DELETE: libname(modname) not followed by a <cr>.

• DELETE: modname not specified.

• CREATE: filename not followed by a <cr>.

• LIST: TO filename not followed by PUBLICS or a <cr>.

LEFT PARENTHESIS EXPECTED

There is a missing "(" in the command.

RIGHT PARENTHESIS EXPECTED

There is a missing ")" in the command.

MODULE NAME TOO LONG

The specified module name exceeds 31 characters.

'TO' EXPECTED

G-l

LIB Error Messages MCS-80/85 Utilities

0-2

The TO filename is omitted in the ADD command.

UNRECOGN~EDCOMMAND

An illegal or misspelled command was entered. The only legal commands are ADD,
CREATE, DELETE, EXIT, and LIST.

File or Module Errors

The following errors indicate that there is some problem with the file or module
specified. There is no partial copy of the command given with these error messages.

FILE ALREADY EXISTS

The file specified in the CREATE command already exists. Choose a new name for
the library.

filename, CHECKSUM ERROR (see ISIS-II error 208)

Filename, DUPLICATE SYMBOL IN INPUT

You have attempted to ADD a file which contains a PUBLIC symbol already within
the library.

filename, ILLEGAL RECORD FORMAT (see ISIS-II error 218)

filename, NOT LIBRARY

The specified file is not a library.

filename, OBJECT RECORD TOO SHORT (see ISIS-II error 217)

filename(modname): NOT FOUND

You have attempted to delete a module which does not exist. Check for misspelling
of the filename or module name.

modname-ATTEM PT TO ADD DU PLICATE MODU LE

The specified module name already appears within the library.

symbol-ALREADY IN LIBRARY

You have attempted to add a module that contains a PUBLIC symbol which is
already in the library.

absolute address, 1-1,2-2,2-5
absolute segment, 2-2, 2-5
ADD command (LIB), 4-2
address

absolute, 1-1, 1-4
base, 1-4
relative memory, 1-1, 1-5
relative start, 1-4
start assigned by HEXOBJ, 6-1

ampersand (&), as continuation character
in LIB, 4-1
in LINK, 2-3f.
in LOCATE, 3-6

at sign (@), in module names, 2-6,3-9
A TTRIB system call, 3-5

base address, 1-4
blank common, 3-14
braces, as notation ({}), iii
brackets, as notation ([]), iii
buffer areas

allocating, 3-5f.
in ISIS-II, 1-3, 3-5

byte-relocatable segments, 2-2, 2-5

CODE
control (LOCATE), 3-12
in ORDER control, 3-12
see also ORDER

code segment, 1-4,2-2
where loaded by LOCATE, 3-2

COLUMNS control
in LOCATE, 3-6f.
interaction with SYMBOLS,

PUBLICS,
LINES, 3-7

commands
LIB,4-lff.

ADD,4-2
CREATE,4-1
DELETE,4-2
EXIT,4-3
LIST,4-3

LINK, 2-3ff.
MAP, 2-4
NAME,2-6
PRINT,2-6
PUBLICS, 2-3, 5-1

LOCATE,3-1ff.
CODE,3-12
COLUMNS, 3-6
Icommon/,3-14
I I (blank common), 3-14
DATA,3-13
LINES, 3-7
MAP, 3-8
MEMORY, 3-13
NAME,3-9
ORDER,3-12

INDEX

PRINT,3-9
PUBLICS, 3-9
PURGE,3-1O
RESTARTO,3-11
STACK,3-13
STACKSIZE,3-12
START,3-1O

common segments
blank,3-14
in LOCATE, 3-3
named,3-14
unnamed,3-14

Icommonl control (LOCATE), 3-14
CONSOL system call, 3-5
continuation character (&)

see ampersand
CREATE command (LIB), 4-1

DATA control (LOCATE), 3-13
data segment, 1-4, 2-2

in ORDER control (LOCATE), 3-12
where loaded by LOCATE, 3-2
see also ORDER

debugging, 1-2
defaults

order of segments, 3-3
see individual commands for defaults

DELETE command (LIB), 4-2
DELETE system call, 3-5

ellipses, in syntax notation, iii
error messages

disk 1/0, D-4
ISIS-II,D-lff.
LIB

command errors, G-l
file or module errors, G-2

LINK, E-lff.
.input file errors, E-2

LOCATE, F-lff.
input file errors, F-2

EXIT command (LIB), 4-3
extensions, file name, 1-6, 2-4, 3-6, 4-1
external references, 1-4, 1-6, 4-1, 5-1

file name extensions, 1-6, 2-4, 3-6, 4-1

gaps
how generated, 2-3, 3-3, 3-4
how reported (LINK), 2-3, 2-5

hexadecimal paper-tape format, A-I
HEXOBJ,6-1
HIGH operator, 3-2f.

iAPX 86,88 family, 1-1
iIi page-relocatable segments, 2-2, 2-5
interrupts, used by ISIS-II, 1-3
inter-segment references, 1-4, I-5f.

Index-I

Index

intra-segment references, 1-4, I-Sf.
invocation

LIB,4-1
LINK,2-3
LOCATE, 3-1, 3-6

ISIS-II
error messages, D-I ff.
interrupt usage, 1-3
memory usage, 1-3

LIB,4-lff.
ADD command, 4-2
CREATE command, 4-1
DELETE command, 4-2
error messages, G-I f.
EXIT command, 4-3
invocation, 4-1
LIST command, 4-3
PUBLICS control, 4-3

librarian, see LIB
libraries, 1-7

as LINK input files, 2-1,2-3
creating, modifying, listing see LIB

library manager, see LIB
LIB. TMP temporary file, 4-1
LINES control (LOCATE), 3-7

see also PURGE
LINK, 2-lff.

error messages, E-lff.
invocation, 2-3f.
MAP command, 2-4
NAME command, 2-6
~)Verlays, use with 5-1 f.
PRINT command, 2-6
PUBLICS control, 2-3, ~-I

LINK.TMP temporary file, 2-4
LIST command (LIB), 4-3

PUBLICS control, 4-3
literature, related, iii
LOAD system call, 3-5
LOCATE

error messages, F-lff.
invocation, 3-1, 3-6
LIB,4-lff.

ADD,4-2
CREATE,4-1
DELETE,4-2
EXIT,4-3
LIST,4-3

LINK, 2-3ff.
MAP, 2-4
NAME,2-6
PRINT,2-6
PUBLICS, 2-3, 5-1

LOCATE, 3-lff.
CODE,3-12
COLUMNS, 3-6
/common/,3-14
/ / (blank common), 3-14
DATA,3-13
LINES, 3-7
MAP, 3-8
MEMORY, 3-13
NAME,3-9
ORDER, 3-12

Index-2

MCS-80/8S Utilities

PRINT, 3-9
PUBLICS, 3-9
PURGE, 3-10
REST AR TO, 3-11
STACK,3-13
STACKSIZE,3-12
START,3-10

LOCATE.TMP temporary file, 3-6
LOW operator, 3-2f.

MAP
control in LINK, 2-4f.
control in LOCATE, 3-8

MEMORY
control (LOCATE), 3-13
in ORDER control (LOCATE), 3-12
see also ORDER

memory map, 1-6, 2-4f, 3-8
memory segment, 1-4, 2-2

length of, 3-8

NAME
control in LINK, 2-6
control in LOCATE, 3-9

named common, 3-14
order produced by LINK, 3-3f.

notation, syntax, iii

OBJHEX, 6-2
ORDER control (LOCATE), 3-12

default order, 3-2
specifying segment order, 3-3

overlapping segments, 2-2,2-5,3-1,3-8
overlays, 5-lff.

management, 5-2
root segment, 5-1

page-re1ocatable segments, 2-5
paper-tape format (hexadecimal), A-I
PRINT

control in LINK, 2-6
control in LOCATE, 3-9

program segments
assigning addresses to, 3-4, 3-12f.
definition of, 1-4
in LINK, 2-1
in LOCATE, 3-2
ordering, 3-2f, 3-12f.

public symbols, 1-4,2-3,4-3,5-1
PUBLICS

control in LIB, 4-3
control in LINK, 2-3
control in LOCATE, 3-9
see also PURGE

punctuation, in syntax notation, iv
PURGE control (LOCATE), 3-10

see also LINES, SYMBOLS,
PUBLICS

question mark (1) in module name,
2-6,3-9

related literature, iii
relative memory addresses, 1-1, 1-4f.
relative start address, of a segment, 1-4
relocation types, 2~2

how treated by LINK, 2-2f.

MCS-80/85 Utilities

RENAME system call, 3-5
REST ARTO control (LOCATE), 3-11
reverse video, in syntax notation, iv
root segment, 5-1

satisfied module, 1-6
STACK

control (LOCATE), 3-13
in ORDER control, 3-12
see a/so ORDER

stack segment, 1-4,2-2
STACKSIZE control (LOCATE), 3-12
START control (LOCATE), 3-1Of.
SUBMIT files, effect on buffer

requirements, 3-5
SYMBOLS control (LOCATE), 3-10

see a/so PURGE
syntax notation, iiif.
system calls (ISIS-II), 3-5

temporary files
LIB. TMP, 4-1
LINK.TMP, 2-4
LOCATE.TMP, 3-6

Index

unnamed (blank) common, 3-14
unsatisfied external references, 1-6, 2-1
unsatisfied modules, 1-6

Index-3

MCS-80/B5 Utilities User's Guide
for B080/BOB5-Based Development Systems

121617-001 Rev. A

REQUEST FOR READER'S COMMENTS

The Microcomputer Division Technical Publications Department attempts to provide documents that meet
the needs of all Intel product users. This form lets you participate directly in the documentation process.

Please restrict your comments to the usability, accuracy, readability, organization, and completeness of
this document.

1. Please specify by page any errors you found in this manual.

2. Does the document cover the information you expected or required? Please make suggestions for
improvement.

3. Is this the right type of document for your needs? Is it at the right level? What other types of
documents are needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this document on a scale of 1 to 10 with 10 being the best rati.ng.

NAME __ ___ DATE _________________ _

TITLE __ _

COMPANYNAME/DEPARTMENT ________________________ ~ ______________________ ~

ADDRESS
CITY __ ----_. ----,---- STATE ____________ _ ZIP CODE ________ _

Please check here if you require a written reply. [J

WE'D LIKE YOUR COMMENTS .•.

This document is one of a series describing Intel products. Your comments on the back of this form will
help us produce better manuals. Each reply will be carefully reviewed by the responsible person. All
comments and suggestions become the property of Intel Corporation.

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 1040 SANTA CLARA, CA

POSTAGE WILL BE PAID BY ADDRESSEE

Intel Corporation
Attn: Technical Publications MIS 6-2000
3065 Bowers Avenue
Santa Clara, CA 95051

111111 NO POSTAGE
NECESSARY

IF MAILED

IN U.S.A.

INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, California 95051 (408) 987-8080

Printed in U.S.A.

